全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于区块链和需求响应的电力系统减排模型
Power System Emission Reduction Modelling Based on Blockchain and Demand Response

DOI: 10.12677/orf.2025.151031, PP. 331-343

Keywords: 区块链,需求响应,电碳耦合,双层模型
Blockchain
, Demand Response, Electricity-Carbon Coupling, Two-Layer Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着全球能源转型和碳排放监管的不断加强,电力市场的运行效率和碳排放管理面临着前所未有的挑战。本文提出了一个基于区块链技术的双层博弈优化模型,旨在提升电力市场的运营效率和碳排放管理。模型通过精确调控需求响应机制,优化电力市场中的供需平衡与碳排放分配。上层问题侧重于供给侧的决策,结合传统火电与可再生风电的成本、收益及碳交易因素,推动电力供应商在低碳环境下作出最优选择;下层问题则聚焦于用户侧,通过需求响应机制引导用户根据电力价格波动和可用电量作出灵活调整,促进绿色电力的消费。区块链技术的引入,不仅确保了电力交易和碳排放数据的透明和可追溯,还增强了市场参与者之间的信息对称性,从而提升了系统整体效率。实验结果表明,引入区块链后,用户侧的需求响应能显著提升电力市场的运行效率,为电力市场定价机制和碳排放管理提供了重要的理论支持和实践指导。
With the continuous strengthening of global energy transformation and carbon emission regulation, the operational efficiency of the power market and carbon emission management are facing unprecedented challenges. This paper proposes a two-layer game optimization model based on blockchain technology, aiming to enhance the operational efficiency of the power market and carbon emission management. The model precisely regulates the demand response mechanism to optimize the supply-demand balance and carbon emission allocation in the power market. The upper-level problem focuses on the decision-making of the supply side. By considering the costs, revenues, and carbon trading factors of traditional thermal power and renewable wind power, it promotes power suppliers to make optimal choices in a low-carbon environment. The lower-level problem focuses on the user side. Through the demand response mechanism, it guides users to make flexible adjustments according to power price fluctuations and available power, promoting the consumption of green electricity. The introduction of blockchain technology not only ensures the transparency and traceability of power trading and carbon emission data but also enhances the information symmetry among market participants, thus improving the overall system efficiency. Experimental results show that after the introduction of blockchain, the demand response on the user side can significantly improve the operational efficiency of the power market, providing important theoretical support and practical guidance for the pricing mechanism of the power market and carbon emission management.

References

[1]  齐彩娟, 靳盘龙, 杨燕, 等. 计及碳定价的新型电力系统容量优化配置研究[J/OL]. 电网技术, 2024: 1-12.
https://doi.org/10.13335/j.1000-3673.pst.2024.0490, 2024-06-20.
[2]  陈芷萌, 雷舒娅, 魏仁杰, 等. 面向双碳目标的“位置公平”用户侧碳责任分摊方法研究[J]. 电网技术, 2024, 48(9): 3544-3553.
[3]  庞思颜, 饶欢, 梅傲琪, 等. 面向智能电网能源枢纽的需求响应策略研究[J]. 制造业自动化, 2023, 45(10): 141-146.
[4]  程乐峰, 杨汝, 刘贵云, 等. 多群体非对称演化博弈动力学及其在智能电网电力需求侧响应中的应用[J]. 中国电机工程学报, 2020, 40(S1): 20-36.
[5]  王伟, 杨伟光, 高立忠, 等. 基于智能电网调度支持的居民用电侧自动需求响应系统[J]. 现代电子技术, 2017, 40(10): 172-174.
[6]  代业明, 高岩, 高红伟, 等. 基于需求响应的智能电网实时电价谈判模型[J]. 中国管理科学, 2017, 25(3): 130-136.
[7]  闫华光, 陈宋宋, 杜重阳, 等. 智能电网电力需求响应标准体系研究与设计[J]. 电网技术, 2015, 39(10): 2685-2689.
[8]  张艺, 杨佳峰, 胡伟. 基于多链式区块链的多类型产消者电力交易决策模型[J]. 系统管理学报, 2024, 33(5): 1251-1260.
[9]  李达, 杨珂, 郭庆雷. 面向虚拟电厂电力交易的隐私保护结算模型[J]. 电网技术, 2024, 48(9): 3713-3723.
[10]  胡海洋, 刘畅, 王栋, 等. 基于区块链的清洁能源数据溯源机制[J]. 信息网络安全, 2024, 24(4): 626-639.
[11]  李军祥, 梁贤武, 屈德强, 等. 基于区块链技术的光伏产消者集群定价博弈[J]. 电力系统保护与控制, 2024, 52(5): 73-82.
[12]  马光, 江伟, 李文朝, 等. 基于云边协同和区块链的分布式能源交易系统设计[J]. 电力工程技术, 2023, 42(4): 159-166.
[13]  李达, 郭庆雷, 冯景丽. 基于区块链的分布式电力交易隐私结算模型[J]. 电网技术, 2023, 47(9): 3608-3624.
[14]  李治国, 王杰, 赵园春. 碳排放权交易的协同减排效应: 内在机制与中国经验[J]. 系统工程, 2022, 40(3): 1-12.
[15]  周继儒, 李军祥, 何建佳, 等. 基于区块链的微网与大电网合作博弈研究[J]. 系统工程理论与实践, 2021, 41(8): 2090-2100.
[16]  卢志刚, 郭凯, 闫桂红, 等. 考虑需求响应虚拟机组和碳交易的含风电电力系统优化调度[J]. 电力系统自动化, 2017, 41(15): 58-65.
[17]  刘明涛, 谢俊, 张秋艳, 等. 碳交易环境下含风电电力系统短期生产模拟[J]. 上海交通大学学报, 2021, 55(12): 1598-1607.
[18]  赵麟, 李亚鹏, 靳晓雨, 等. 考虑CCER机制的碳-电耦合市场中水火电协同竞价模型[J]. 电力系统自动化, 2023, 47(21): 12-24.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133