|
Material Sciences 2025
Cu-22TiH2连接Mo与Ti6Al4V接头的微观及力学性能
|
Abstract:
采用Cu-22TiH2焊料在930℃时钎焊了Mo与Ti6Al4V合金,连接区域由焊料层和靠近Ti6Al4V合金侧的扩散层组成。其中,焊料层主要含有TiCu、Ti2Cu、Ti(ss) (固溶体)及Mo等相,而扩散层主要由Ti(ss)和Ti2Cu相组成。接头的剪切强度为56.2 ± 9.4 MPa,接头断裂发生在Mo母材上,这主要是由于接头残余热应力主要集中在热膨胀系数相对小的母材侧。
Mo and Ti6Al4V alloys were brazed using Cu-22TiH2 filler at 930?C. The joint area consists of a filler area and a diffusion area near the Ti6Al4V alloy substrate side. The filler area mainly contains TiCu, Ti2Cu, Ti(ss) (solid solution) and Mo phases, while the diffusion area mainly consists of Ti(ss) and Ti2Cu phases. The shear strength of the joint is 56.2 ± 9.4 MPa, and the joint fracture occurs on the Mo substrate, which is mainly due to the fact that the residual thermal stresses in the joint were mainly concentrated on the base material side, which has a relatively small coefficient of thermal expansion.
[1] | Xu, B., Cai, Y., Haider, J., Khan, F.N., Shehbaz, T., Zhao, H., et al. (2023) Microstructural and Mechanical Characterizations of Mo/W and Mo/Graphite Joints with BNi2 Paste. Advanced Engineering Materials, 26, Article ID: 2301004. https://doi.org/10.1002/adem.202301004 |
[2] | Chakraborty, S.P., Banerjee, S., Sharma, I.G. and Suri, A.K. (2010) Development of Silicide Coating over Molybdenum Based Refractory Alloy and Its Characterization. Journal of Nuclear Materials, 403, 152-159. https://doi.org/10.1016/j.jnucmat.2010.06.014 |
[3] | Chang, C.T. and Shiue, R.K. (2005) Infrared Brazing Ti-6Al-4V and Mo Using the Ti-15Cu-15Ni Braze Alloy. International Journal of Refractory Metals and Hard Materials, 23, 161-170. https://doi.org/10.1016/j.ijrmhm.2005.01.002 |
[4] | 姚青, 成会朝. Mo/Ti6Al4V扩散连接接头的高温性能[J]. 广东化工, 2019, 46(9): 24-25. |
[5] | Yao, Q., Cheng, H., Fan, J., Yan, H. and Zhang, C. (2019) High Strength Mo/Ti6Al4V Diffusion Bonding Joints: Interfacial Microstructure and Mechanical Properties. International Journal of Refractory Metals and Hard Materials, 82, 159-166. https://doi.org/10.1016/j.ijrmhm.2019.04.009 |
[6] | Ivannikov, A.A., Popov, N.S., Abramov, A.V., Terekhova, S.M. and Chuvaeva, E.A. (2023) Microstructure Evolution of Vacuum-Brazed Ti/Mo Joints with Ti-and Zr-Based Filler Metals. Journal of Materials Engineering and Performance, 33, 11937-11943. https://doi.org/10.1007/s11665-023-08773-w |
[7] | 唐仁政, 田荣璋. 二元合金相图及中间相晶体结构[M]. 长沙: 中南大学出版社, 2009. |
[8] | Duan, Y., Mao, Y., Xu, Z., Deng, Q., Wang, G. and Wang, S. (2019) Joining of Graphite to Ti6Al4V Alloy Using Cu‐based Fillers. Advanced Engineering Materials, 21, Article ID: 1900719. https://doi.org/10.1002/adem.201900719 |
[9] | Lin, C.C., Chen, C., Shiue, R.K. and Shi, S.C. (2011) Vacuum Brazing Mo Using Ti-Ni-Nb Braze Alloys. International Journal of Refractory Metals and Hard Materials, 29, 641-644. https://doi.org/10.1016/j.ijrmhm.2011.04.003 |
[10] | Liu, M., Bai, L. and Deng, Y. (2022) Strong Mo/cu Interfacial Bonding Facilitated by Consumable Ti Interlayer. Journal of Manufacturing Processes, 74, 136-140. https://doi.org/10.1016/j.jmapro.2021.12.010 |
[11] | Cui, B., Huang, J., Cai, C., Chen, S. and Zhao, X. (2014) Microstructures and Mechanical Properties of Cf/SiC Composite and TC4 Alloy Joints Brazed with (Ti-Zr-Cu-Ni)+W Composite Filler Materials. Composites Science and Technology, 97, 19-26. https://doi.org/10.1016/j.compscitech.2014.03.021 |
[12] | Guo, W., Wang, L., Zhu, Y. and Chu, P.K. (2015) Microstructure and Mechanical Properties of C/C Composite/TC4 Joint with Inactive AgCu Filler Metal. Ceramics International, 41, 7021-7027. https://doi.org/10.1016/j.ceramint.2015.02.006 |
[13] | Zhou, X., Huang, Y., Chen, Y. and Peng, P. (2018) Laser Joining of Mo and Ta Sheets with Ti6Al4V or Ni Filler. Optics & Laser Technology, 106, 487-494. https://doi.org/10.1016/j.optlastec.2018.05.004 |
[14] | Hao, X., Dong, H., Li, S., Xu, X. and Li, P. (2018) Lap Joining of TC4 Titanium Alloy to 304 Stainless Steel with Fillet Weld by GTAW Using Copper-Based Filler Wire. Journal of Materials Processing Technology, 257, 88-100. https://doi.org/10.1016/j.jmatprotec.2018.02.020 |
[15] | Chu, Q., Zhang, M., Li, J., Fan, Q., Xie, W. and Bi, Z. (2015) Joining of Cp-Ti/Q345 Sheets by Cu-Based Filler Metal and Effect on Interface. Journal of Materials Processing Technology, 225, 67-76. https://doi.org/10.1016/j.jmatprotec.2015.05.017 |
[16] | Zong, W., Zhang, S., Zhang, C., Ren, L. and Wang, Q. (2020) Design and Characterization of Selective Laser‐Melted Ti6Al4V-5Cu Alloy for Dental Implants. Materials and Corrosion, 71, 1697-1710. https://doi.org/10.1002/maco.202011650 |
[17] | Konieczny, M. (2008) Processing and Microstructural Characterisation of Laminated Ti-Intermetallic Composites Synthesised Using Ti and Cu Foils. Materials Letters, 62, 2600-2602. https://doi.org/10.1016/j.matlet.2007.12.067 |
[18] | Lin, D., Chen, Q., Hu, J., Hu, S., Bian, H., Fu, W., et al. (2024) Microstructure Evolution and Mechanical Properties of SiC/Mo Joint Brazed with FeCoCrNi High-Entropy Alloy Filler. Ceramics International, 50, 42045-42058. https://doi.org/10.1016/j.ceramint.2024.08.048 |
[19] | Apblett, C. and Ficalora, P.J. (1991) Stress Generation in Thin Cu-Ti Films in Vacuum and Hydrogen. Journal of Applied Physics, 69, 4431-4432. https://doi.org/10.1063/1.348370 |
[20] | Wang, G., Wang, Z., Wang, W., He, R., Gui, K., Tan, C., et al. (2019) Microstructure and Shear Strength of ZrB2-SiC/Ti-6Al-4V Joint by TiCuZrNi with Cu Foam. Ceramics International, 45, 10223-10229. https://doi.org/10.1016/j.ceramint.2019.02.074 |
[21] | Thamae, M., Maringa, M. and du Preez, W. (2024) A Comparative Analysis of Low and High SiC Volume Fraction Additively Manufactured SiC/Ti6Al4V(ELI) Composites Based on the Best Process Parameters of Laser Power, Scanning Speed and Hatch Distance. Materials, 17, Article 2606. https://doi.org/10.3390/ma17112606 |