|
Material Sciences 2025
钴酸锰双金属复合物自支撑电极用于锌空气电池
|
Abstract:
寻找高活性、低成本和耐用的析氧反应(OER)催化剂仍然是开发金属空气电池阴极的挑战。在此,我们提出了一种新的钴酸锰双金属自支撑电极作催化剂,采用水热和煅烧方法在碳布上合成钴酸锰双金属自支撑电极。该电极无需粘结剂和涂覆,可直接作锌–空气电池阴极。以碳布(CC)为基底使用氮掺杂碳原位构筑钴酸锰,能增加碳表面的孔,暴露更多电化学活性位点。在碱性体系中对OER性能进行研究,结果显示催化剂在电流密度为10 mA·cm?2下具有203 mV的过电位,优于对比样品MnO2@NC/CC和Co3O4@NC/CC。此外,MnCo2O4.5@NC/CC材料所组装的锌空气电池具有优异的循环稳定性,在5 mA·cm?2电流密度下可以稳定循环200 h而电位无明显衰减。
Exploring highly active, low-cost and durable catalysts for the oxygen precipitation reaction (OER) remains a challenge in developing cathodes for metal-air batteries. Herein, we present a new manganese cobaltate bimetallic self-supported electrode as a catalyst, which was synthesized on carbon cloth using hydrothermal and calcination methods. The electrode can be directly used as a zinc-air battery cathode without binder and coating. The in situ construction of manganese cobaltate using nitrogen-doped carbon on carbon cloth (CC) can increase the pores on the carbon surface and expose more electrochemically active sites. The OER performance was investigated in the alkaline system, and the results showed that the catalyst had an overpotential of 203 mV at a current density of 10 mA·cm?2, which was superior to the comparison samples, MnO2@NC/CC and Co3O4@NC/CC. In addition, the zinc-air battery assembled with MnCo2O4.5@NC/CC material has excellent cycling stability and can be stably cycled for 200 h at a current density of 5 mA·cm?2 without significant potential decay.
[1] | Wei, C., Zhang, Q., Wang, Z., Yang, W., Lu, H., Huang, Z., et al. (2022) Recent Advances in MXene‐Based Aerogels: Fabrication, Performance and Application. Advanced Functional Materials, 33, Article ID: 2211889. https://doi.org/10.1002/adfm.202211889 |
[2] | Liu, Q., Pan, Z., Wang, E., An, L. and Sun, G. (2020) Aqueous Metal-Air Batteries: Fundamentals and Applications. Energy Storage Materials, 27, 478-505. https://doi.org/10.1016/j.ensm.2019.12.011 |
[3] | Ren, S., Duan, X., Liang, S., Zhang, M. and Zheng, H. (2020) Bifunctional Electrocatalysts for Zn-Air Batteries: Recent Developments and Future Perspectives. Journal of Materials Chemistry A, 8, 6144-6182. https://doi.org/10.1039/c9ta14231b |
[4] | Shen, H., Gracia-Espino, E., Ma, J., Tang, H., Mamat, X., Wagberg, T., et al. (2017) Atomically FeN2 Moieties Dispersed on Mesoporous Carbon: A New Atomic Catalyst for Efficient Oxygen Reduction Catalysis. Nano Energy, 35, 9-16. https://doi.org/10.1016/j.nanoen.2017.03.027 |
[5] | Lin, Y., Liu, P., Velasco, E., Yao, G., Tian, Z., Zhang, L., et al. (2019) Fabricating Single‐Atom Catalysts from Chelating Metal in Open Frameworks. Advanced Materials, 31, Article ID: 1808193. https://doi.org/10.1002/adma.201808193 |
[6] | Zhang, S., Chen, M., Zhao, X., Cai, J., Yan, W., Yen, J.C., et al. (2021) Advanced Noncarbon Materials as Catalyst Supports and Non-Noble Electrocatalysts for Fuel Cells and Metal-Air Batteries. Electrochemical Energy Reviews, 4, 336-381. https://doi.org/10.1007/s41918-020-00085-0 |
[7] | Fu, T., Li, G., Xiang, Y., Tang, Y., Cai, D., Jiang, S., et al. (2021) Hierarchical Cobalt-Nitrogen-Doped Carbon Composite as Efficiently Bifunctional Oxygen Electrocatalyst for Rechargeable Zn-Air Batteries. Journal of Alloys and Compounds, 878, Article ID: 160349. https://doi.org/10.1016/j.jallcom.2021.160349 |
[8] | Chen, K., Kim, S., Rajendiran, R., Prabakar, K., Li, G., Shi, Z., et al. (2021) Enhancing ORR/OER Active Sites through Lattice Distortion of Fe-Enriched FeNi3 Intermetallic Nanoparticles Doped N-Doped Carbon for High-Performance Rechargeable Zn-Air Battery. Journal of Colloid and Interface Science, 582, 977-990. https://doi.org/10.1016/j.jcis.2020.08.101 |
[9] | Li, W., Qian, X., Hou, S., Xia, X., He, D., Xia, J., et al. (2024) Recent Progress of Self-Supported Anode Materials for Li-Ion Batteries. Journal of Energy Storage, 99, Article ID: 113188. https://doi.org/10.1016/j.est.2024.113188 |
[10] | Yang, M., Shu, X., Pan, W. and Zhang, J. (2021) Toward Flexible Zinc-Air Batteries with Self‐Supported Air Electrodes. Small, 17, Article ID: 2006773. https://doi.org/10.1002/smll.202006773 |
[11] | Li, Z., Guo, K. and Chen, X. (2017) Controllable Synthesis of Nitrogen-Doped Mesoporous Carbons for Supercapacitor Applications. RSC Advances, 7, 30521-30532. https://doi.org/10.1039/c7ra02701j |
[12] | Huang, M., Mi, K., Zhang, J., Liu, H., Yu, T., Yuan, A., et al. (2017) MOF-Derived Bi-Metal Embedded N-Doped Carbon Polyhedral Nanocages with Enhanced Lithium Storage. Journal of Materials Chemistry A, 5, 266-274. https://doi.org/10.1039/c6ta09030c |
[13] | Chen, H., Du, X., Wu, R., Wang, Y., Sun, J., Zhang, Y., et al. (2020) Facile Hydrothermal Synthesis of Porous MgCo2O4 Nanoflakes as an Electrode Material for High-Performance Asymmetric Supercapacitors. Nanoscale Advances, 2, 3263-3275. https://doi.org/10.1039/d0na00353k |
[14] | Aijaz, A., Masa, J., Rösler, C., Xia, W., Weide, P., Botz, A.J.R., et al. (2016) Co@Co3O4 Encapsulated in Carbon Nanotube‐Grafted Nitrogen‐Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode. Angewandte Chemie International Edition, 55, 4087-4091. https://doi.org/10.1002/anie.201509382 |
[15] | Hu, Q., Tang, M., He, M., Jiang, N., Xu, C., Lin, D., et al. (2020) Core-Shell MnO2@CoS Nanosheets with Oxygen Vacancies for High-Performance Super-Capattery. Journal of Power Sources, 446, Article ID: 227335. https://doi.org/10.1016/j.jpowsour.2019.227335 |
[16] | Cao, Y., Ye, R., Li, D., Wang, X., Liu, X., Zhou, L., et al. (2024) Research Progress in Transition Metal Carbides in Electrocatalytic Hydrogen Evolution Reaction. Scientia Sinica Chimica, 55, 472-494. https://doi.org/10.1360/ssc-2024-0039 |
[17] | 段慧超, 王春阳, 叶恒强, 杜奎. 纳米多孔金属表面结构与成分的三维电子层析表征[J]. 金属学报, 2023, 59(10): 1292-1296. |
[18] | Zhao, S., Liu, T., Dai, Y., Wang, J., Wang, Y., Guo, Z., et al. (2023) PT/C as a Bifunctional Orr/Iodide Oxidation Reaction (IOR) Catalyst for Zn-Air Batteries with Unprecedentedly High Energy Efficiency of 76.5%. Applied Catalysis B: Environmental, 320, Article ID: 121992. https://doi.org/10.1016/j.apcatb.2022.121992 |
[19] | Jiang, Z., Liu, X., Liu, X., Huang, S., Liu, Y., Yao, Z., et al. (2023) Interfacial Assembly of Binary Atomic Metal-Nx Sites for High-Performance Energy Devices. Nature Communications, 14, Article No. 1822. https://doi.org/10.1038/s41467-023-37529-2 |