Impact of Stratigraphically Unpositioned Saline Units on Electrical Resistivity in Geothermal Potential Investigations: Case Study Area Eldivan (?ankiri, Turkiye)
Since 1968, geothermal energy utilization in Turkey has increased rapidly due to the country’s significant geological potential. This study aims to evaluate the geothermal potential of the Eldivan region, focusing on subsurface characteristics. Initial analyses indicated a high geothermal gradient at a depth of 900 meters. However, further investigations revealed the presence of previously unmapped and stratigraphically unpositioned saline units, which are identified as the primary cause of low resistivity anomalies observed in Vertical Electrical Sounding (VES) data. Hydrogeochemical analysis of water samples collected from the G?zd?ken Spring confirmed the presence of high sodium (1071 mg/L) and chloride (585 mg/L) concentrations, supporting the existence of these saline units. Using the Fournier & Rowe (1966) quartz geothermometer, a reservoir temperature of 61.88?C was estimated, indicating a low- to medium-enthalpy geothermal system. These findings underscore the necessity for more detailed and integrated approaches to accurately assess the geothermal energy potential of the region.
References
[1]
Akçay, A. E., & Beyazpirinç, M. (2017). The Geological Evolution of Sorgun (Yozgat)-Yildizeli (Sivas) Foreland Basin, Petrographic, Geochemical Aspects and Geochronology of Volcanism Affecting the Basin. Bulletin of the Mineral Research and Exploration, 155, 1-11. https://doi.org/10.19111/bulletinofmre.336625
[2]
Akhter, G., & Hasan, M. (2016). Determination of Aquifer Parameters Using Geoelectrical Sounding and Pumping Test Data in Khanewal District, Pakistan. Open Geosciences, 8, 630-638. https://doi.org/10.1515/geo-2016-0071
[3]
Akyürek, A., Ailginer, E., Çatal, E., Dağer, Z., Soysal, Y., & Sunu, O. (1980). Eldivan—Şabanözü (Çankırı), Hasayaz-Çandır (Kalecik-Ankara) dolayınınjeolojisi. Mineral Research and Exploration General Directorate (MTA).
[4]
Aydın, İ., Karat, H. İ., & Koçak, A. (2005). Curie-Point Depth Map of Turkey. Geophysical Journal International, 162, 633-640. https://doi.org/10.1111/j.1365-246x.2005.02617.x
[5]
Baba, A., & Chandrasekharam, D. (2022). Geothermal Resources for Sustainable Development: A Case Study. International Journal of Energy Research, 46, 20501-20518. https://doi.org/10.1002/er.7778
[6]
Baba, A., Şaroğlu, F., Akkuş, I., Özel, N., Yeşilnacar, M. İ., Nalbantçılar, M. T. et al. (2019). Geological and Hydrogeochemical Properties of Geothermal Systems in the Southeastern Region of Turkey. Geothermics, 78, 255-271. https://doi.org/10.1016/j.geothermics.2018.12.010
[7]
Bölük, H. (2013). Eldivan (Çankırı) dolayındakiderindolaşımlısularınjeotermalkaynak-larlailişkisinintektonikaçıdanincelenmesi. Master’s Thesis, Akdeniz University Institute of Science.
[8]
Çelik, Ö. F., Chiaradia, M., Marzoli, A., Billor, Z., & Marschik, R. (2013). The Eldivan Ophiolite and Volcanic Rocks in the İzmir-Ankara-Erzincan Suture Zone, Northern Turkey: Geochronology, Whole-Rock Geochemical and Nd-Sr-Pb Isotope Characteristics. Lithos, 172, 31-46. https://doi.org/10.1016/j.lithos.2013.03.010
[9]
Chikabvumbwa, S. R., Sibale, D., Marne, R., Chisale, S. W., & Chisanu, L. (2021). Geophysical Investigation of Dambo Groundwater Reserves as Sustainable Irrigation Water Sources: Case of Linthipe Sub-Basin. Heliyon, 7, e08346. https://doi.org/10.1016/j.heliyon.2021.e08346
[10]
Dawoud, M. A., & Raouf, A. R. A. (2009). Groundwater Exploration and Assessment in Rural Communities of Yobe State, Northern Nigeria. Water Resources Management, 23, 581-601. https://doi.org/10.1007/s11269-008-9289-x
[11]
Düşünür-Doğan, D., & Üner, S. (2019). Numerical Simulation of Groundwater Flow and Temperature Distribution in Aegean Coast of Turkey. Journal of Earth System Science, 128, Article No. 154. https://doi.org/10.1007/s12040-019-1183-9
[12]
Fournier, R. O., & Rowe, J. J. (1966). Estimation of Underground Temperatures from the Silica Content of Water from Hot Springs and Wet-Steam Wells. American Journal of Science, 264, 685-697. https://doi.org/10.2475/ajs.264.9.685
[13]
Hodlur, G. K., Dhakate, R., & Andrade, R. (2006). Correlation of Vertical Electrical Sounding and Borehole-Log Data for Delineation of Saltwater and Freshwater Aquifers. Geophysics, 71, G11-G20. https://doi.org/10.1190/1.2169847
[14]
Horasan, B. Y., & Öztürk, A. (2021). Evaluation of Heavy Metal Content of Salts between Eskıkışla and Ocakbaşı (Kırıkkale) Villages. Turkish Journal of Engineering, 5, 29-34. https://doi.org/10.31127/tuje.652452
[15]
Hussain, Y., Ullah, S. F., Hussain, M. B., Martinez-Carvajal, H., & Aslam, A. Q. (2016). Protective Capacity Assessment of Vadose Zone Material by Geo-Electrical Method: A Case Study of Pakistan. International Journal of Geosciences, 7, 716-725. https://doi.org/10.4236/ijg.2016.75055
[16]
Ileri, I. (2007). Eldivan-ElmadağTektonikKaması Güney SınırınınYapısalÖzellikleri. Master’s Thesis, Ankara Science University.
[17]
Karadenizli, L. (2011). Oligocene to Pliocene Palaeogeographic Evolution of the Çankırı-Çorum Basin, Central Anatolia, Turkey. Sedimentary Geology, 237, 1-29. https://doi.org/10.1016/j.sedgeo.2011.01.008
[18]
Karaoğlan, F., Parlak, O., Klötzli, U., Thöni, M., & Koller, F. (2012). U-Pb and Sm-Nd Geochronology of the Ophiolites from the SE Turkey: Implications for the Neotethyan Evolution. Geodinamica Acta, 25, 146-161. https://doi.org/10.1080/09853111.2013.858948
[19]
Kasidi, S. (2017). Application of Vertical Electrical Sounding (VES) in Delineating Ground Water Potential in Some Part of Jalingo, Taraba State North Eastern Nigeria. International Journal for Research in Applied Science and Engineering Technology, V, 558-566. https://doi.org/10.22214/ijraset.2017.10082
[20]
Korkmaz, S., Kara-Gülbay, R., Khoitiyn, T., & Erdoğan, M. S. (2022). Biomarkers Geochemistry of the Alpagut Oil Shale Sequence: An Evaluation of Dispositional Environments and Source Rock Potential from Dodurga-Çorum Basin (N-Turkey). Journal of Petroleum Exploration and Production Technology, 12, 2173-2189. https://doi.org/10.1007/s13202-021-01450-5
[21]
Lukuman, A. (2019). The Use of Combined Geophysical Survey Methods for Groundwater Investigation in a Typical Basement Complex Terrain: Case Study of Erunmu, Ibadan, Southwest Nigeria. Journal of Geography, Environment and Earth Science International, 23, 1-16. https://doi.org/10.9734/jgeesi/2019/v23i230165
[22]
Lund, J. W. (2010). Direct Utilization of Geothermal Energy. Energies, 3, 1443-1471. https://doi.org/10.3390/en3081443
[23]
Métais, G., Albayrak, E., Antoine, P., Erdal, O., Karadenizli, L., Oyal, N. et al. (2016). Oligocene ruminants from the Kızılırmak Formation, Çankırı-Çorum Basin, Central Anatolia, Turkey. Palaeontologia Electronica, 19, Article No. 19.3.37A. https://doi.org/10.26879/629
[24]
Moix, P., & Goričan, Š. (2013). Jurassic and Cretaceous Radiolarian Assemblages from the Bornova Mélange in Northern Karaburun Peninsula (Western Turkey) and Its Connection to the İzmir-Ankara Mélanges. Geodinamica Acta, 26, 56-67. https://doi.org/10.1080/09853111.2013.877238
[25]
Okoro, E. I., Egboka, B. C. E., & Onwuemesi, A. G. (2010). Evaluation of the Aquifer Characteristic of Nanka Sands Using Hydrogeological Method in Combination with Vertical Electrical Sounding (VES). Journal of Applied Sciences and Environmental Management, 14, 5-9. https://doi.org/10.4314/jasem.v14i2.57822
[26]
Özaydın, S., Tank, S. B., & Karaş, M. (2018). Electrical Resistivity Structure at the North-Central Turkey Inferred from Three-Dimensional Magnetotellurics. Earth, Planets and Space, 70, Article No. 49. https://doi.org/10.1186/s40623-018-0818-4
[27]
Ozgener, O., & Hepbasli, A. (2007). Modeling and Performance Evaluation of Ground Source (Geothermal) Heat Pump Systems. Energy and Buildings, 39, 66-75. https://doi.org/10.1016/j.enbuild.2006.04.019
[28]
Rabet, R. S., Simsek, C., Baba, A., & Murathan, A. (2017). Blowout Mechanism of Alasehir (Turkey) Geothermal Field and Its Effects on Groundwater Chemistry. Environmental Earth Sciences, 76, Article No. 49. https://doi.org/10.1007/s12665-016-6334-6
[29]
Salman, A. M., Abed, A. M., & Thabit, J. M. (2020). Comparison between Dipole-Dipole and Pole-Dipole Arrays in Delineation of Subsurface Weak Zones Using 2D Electrical Imaging Technique in Al-Anbar University, Western Iraq. Iraqi Journal of Science, 61, 567-576. https://doi.org/10.24996/ijs.2020.61.3.12
[30]
Santi, N., Barala, I., & Putranto, T. T. (2022). Study of Aquifer Distribution Based on Rock Resistivity Data in Warureja Village and Surroundings, Warureja District, Tegal, Central Java. IOP Conference Series: Earth and Environmental Science, 1098, Article ID: 012045. https://doi.org/10.1088/1755-1315/1098/1/012045
[31]
Seyitoğlu, G., Kazancı, N., Karadenizli, L., Şen, Ş., Varol, B., & Saraç, G. (2004). Neogene Tectono-Sedimentary Development of the Western Margin of the Çankırı Basin, Central Turkey: Reply to the Comment of Kaymakçı 2003. Terra Nova, 16, 163-165. https://doi.org/10.1111/j.1365-3121.2004.00548.x
[32]
Shanshal, Z. M. (2018). Electrical Resestivity Investigation for Groundwater of Three Villages in Sumel District-Duhok City North of Iraq. Tikrit Journal of Pure Science, 23, 102-113. https://doi.org/10.25130/tjps.23.2018.015
[33]
Üner, T., Çakir, Ü., Özdemir, Y., & Arat, I. (2014). Geochemistry and Origin of Plagiogranites from the Eldivan Ophiolite, Çankırı (Central Anatolia, Turkey). GeologicaCarpathica, 65, 197-207. https://doi.org/10.2478/geoca-2014-0013