全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

人工骨膜修复骨缺损的研究进展
Research Progress of Artificial Periosteum in Repairing Bone Defects

DOI: 10.12677/jcpm.2025.41021, PP. 135-142

Keywords: 人工骨膜,仿生骨膜,骨缺损,骨再生
Artificial Periosteum
, Bionic Periosteum, Bone Defect, Bone Regeneration

Full-Text   Cite this paper   Add to My Lib

Abstract:

骨膜是包裹在骨皮质表面的一层薄而坚韧的结缔组织膜,由外层纤维层和内层生发层共两层组成。覆盖整个骨面达80%以上,为骨组织提供血液供应和初始干细胞,主要起固定、营养和保护的作用,大量研究证明骨膜具有显著的成骨潜能。因此,构建仿生骨膜替代物修复骨缺损越来越受到研究者的重视。近年来人工骨膜材料也取得了重大进步,各种新型的人工骨膜材料也被证实在修复骨缺损方面确有其效。本文系统总结了人工骨膜现阶段的研究进展,为相关领域的研究人员提供了参考,有助于推动人工骨膜的临床转化。
The periosteum is a thin and tough connective tissue membrane wrapped around the surface of the bone cortex, consisting of two layers: the outer fibrous layer and the inner germinal layer. It covers more than 80% of the entire bone surface, provides blood supply and initial stem cells for bone tissue, and mainly plays the role of fixation, nutrition and protection. A large number of studies have shown that the periosteum has significant osteogenic potential. Therefore, the construction of bionic periosteum substitutes to repair bone defects has attracted more and more attention from researchers. In recent years, artificial periosteum materials have also made significant progress, and various new artificial periosteum materials have also been proven to be effective in repairing bone defects. This article systematically summarizes the current research progress of artificial periosteum, provides a reference for researchers in related fields, and helps promote the clinical transformation of artificial periosteum.

References

[1]  Liang, K., Zhao, C., Song, C., Zhao, L., Qiu, P., Wang, S., et al. (2022) In situ Biomimetic Mineralization of Bone-Like Hydroxyapatite in Hydrogel for the Acceleration of Bone Regeneration. ACS Applied Materials & Interfaces, 15, 292-308.
https://doi.org/10.1021/acsami.2c16217
[2]  Zhou, B., Jiang, X., Zhou, X., Tan, W., Luo, H., Lei, S., et al. (2023) GelMA-Based Bioactive Hydrogel Scaffolds with Multiple Bone Defect Repair Functions: Therapeutic Strategies and Recent Advances. Biomaterials Research, 27, Article 86.
https://doi.org/10.1186/s40824-023-00422-6
[3]  Zhang, X., Liu, W., Liu, J., Hu, Y. and Dai, H. (2021) Poly-ε-Caprolactone/Whitlockite Electrospun Bionic Membrane with an Osteogenic-Angiogenic Coupling Effect for Periosteal Regeneration. ACS Biomaterials Science & Engineering, 7, 3321-3331.
https://doi.org/10.1021/acsbiomaterials.1c00426
[4]  Qian, F., Huang, Z., Liu, W., Liu, Y. and He, X. (2023) Functional β‐TCP/MnO2/PCL Artificial Periosteum Promoting Osteogenic Differentiation of BMSCs by Reducing Locally Reactive Oxygen Species Level. Journal of Biomedical Materials Research Part A, 111, 1678-1691.
https://doi.org/10.1002/jbm.a.37576
[5]  Wang, J., Chen, G., Chen, Z.M., Wang, F.P. and Xia, B. (2022) Current Strategies in Biomaterial-Based Periosteum Scaffolds to Promote Bone Regeneration: A Review. Journal of Biomaterials Applications, 37, 1259-1270.
https://doi.org/10.1177/08853282221135095
[6]  Li, Q., Liu, W., Hou, W., Wu, X., Wei, W., Liu, J., et al. (2023) Micropatterned Photothermal Double-Layer Periosteum with Angiogenesis-Neurogenesis Coupling Effect for Bone Regeneration. Materials Today Bio, 18, Article 100536.
https://doi.org/10.1016/j.mtbio.2022.100536
[7]  Wu, L., Gu, Y., Liu, L., Tang, J., Mao, J., Xi, K., et al. (2020) Hierarchical Micro/Nanofibrous Membranes of Sustained Releasing VEGF for Periosteal Regeneration. Biomaterials, 227, Article 119555.
https://doi.org/10.1016/j.biomaterials.2019.119555
[8]  Yang, Y., Rao, J., Liu, H., Dong, Z., Zhang, Z., Bei, H., et al. (2022) Biomimicking Design of Artificial Periosteum for Promoting Bone Healing. Journal of Orthopaedic Translation, 36, 18-32.
https://doi.org/10.1016/j.jot.2022.05.013
[9]  Wu, J., Yao, M., Zhang, Y., Lin, Z., Zou, W., Li, J., et al. (2021) Biomimetic Three-Layered Membranes Comprising (Poly)-ε-Caprolactone, Collagen and Mineralized Collagen for Guided Bone Regeneration. Regenerative Biomaterials, 8, rbab065.
https://doi.org/10.1093/rb/rbab065
[10]  Song, H., Puri, A., Lee, J., Park, H., Ra, D., Kim, G., et al. (2002) Spontaneous Bone Regeneration in Surgically Induced Bone Defects in Young Rabbits. Journal of Pediatric Orthopaedics B, 11, 343-349.
https://doi.org/10.1097/01202412-200210000-00014
[11]  Liu, Z., Nan, H., Chiou, Y.S., Zhan, Z., Lobie, P.E. and Hu, C. (2022) Selective Formation of Osteogenic and Vasculogenic Tissues for Cartilage Regeneration. Advanced Healthcare Materials, 12, Article ID: 2202008.
https://doi.org/10.1002/adhm.202202008
[12]  Gupta, S., Teotia, A.K., Qayoom, I., Shiekh, P.A., Andrabi, S.M. and Kumar, A. (2021) Periosteum-Mimicking Tissue-Engineered Composite for Treating Periosteum Damage in Critical-Sized Bone Defects. Biomacromolecules, 22, 3237-3250.
https://doi.org/10.1021/acs.biomac.1c00319
[13]  Zhang, J., Huang, Y., Wang, Y., Xu, J., Huang, T. and Luo, X. (2023) Construction of Biomimetic Cell-Sheet-Engineered Periosteum with a Double Cell Sheet to Repair Calvarial Defects of Rats. Journal of Orthopaedic Translation, 38, 1-11.
https://doi.org/10.1016/j.jot.2022.09.005
[14]  Ma, Z., Guo, K., Chen, L., Chen, X., Zou, D. and Yang, C. (2023) Role of Periosteum in Alveolar Bone Regeneration Comparing with Collagen Membrane in a Buccal Dehiscence Model of Dogs. Scientific Reports, 13, Article No. 2505.
https://doi.org/10.1038/s41598-023-28779-7
[15]  Yang, Y., Xu, T., Zhang, Q., Piao, Y., Bei, H.P. and Zhao, X. (2021) Biomimetic, Stiff, and Adhesive Periosteum with Osteogenic-Angiogenic Coupling Effect for Bone Regeneration. Small, 17, Article ID: 2006598.
https://doi.org/10.1002/smll.202006598
[16]  Liu, H., Shi, Y., Zhu, Y., Wu, P., Deng, Z., Dong, Q., et al. (2023) Bioinspired Piezoelectric Periosteum to Augment Bone Regeneration via Synergistic Immunomodulation and Osteogenesis. ACS Applied Materials & Interfaces, 15, 12273-12293.
https://doi.org/10.1021/acsami.2c19767
[17]  Zhang, W., Wang, N., Yang, M., Sun, T., Zhang, J., Zhao, Y., et al. (2022) Periosteum and Development of the Tissue-Engineered Periosteum for Guided Bone Regeneration. Journal of Orthopaedic Translation, 33, 41-54.
https://doi.org/10.1016/j.jot.2022.01.002
[18]  Li, J., He, D., Hu, L., Li, S., Zhang, C., Yin, X., et al. (2023) Decellularized Periosteum Promotes Guided Bone Regeneration via Manipulation of Macrophage Polarization. Biotechnology Journal, 18, Article ID: 2300094.
https://doi.org/10.1002/biot.202300094
[19]  Chen, K., Lin, X., Zhang, Q., Ni, J., Li, J., Xiao, J., et al. (2015) Decellularized Periosteum as a Potential Biologic Scaffold for Bone Tissue Engineering. Acta Biomaterialia, 19, 46-55.
https://doi.org/10.1016/j.actbio.2015.02.020
[20]  Zhu, G., Zhou, Y., Xu, Y., Wang, L., Han, M., Xi, K., et al. (2023) Functionalized Acellular Periosteum Guides Stem Cell Homing to Promote Bone Defect Repair. Journal of Biomaterials Science, Polymer Edition, 34, 2000-2020.
https://doi.org/10.1080/09205063.2023.2204779
[21]  Li, S., Deng, R., Forouzanfar, T., Wu, G., Quan, D. and Zhou, M. (2022) Decellularized Periosteum-Derived Hydrogels Promote the Proliferation, Migration and Osteogenic Differentiation of Human Umbilical Cord Mesenchymal Stem Cells. Gels, 8, Article 294.
https://doi.org/10.3390/gels8050294
[22]  Rapp, S.J., Jones, D.C., Gerety, P. and Taylor, J.A. (2012) Repairing Critical-Sized Rat Calvarial Defects with Progenitor Cell-Seeded Acellular Periosteum: A Novel Biomimetic Scaffold. Surgery, 152, 595-605.E1.
https://doi.org/10.1016/j.surg.2012.07.019
[23]  Manon, J., Evrard, R., Fievé, L., Bouzin, C., Magnin, D., Xhema, D., et al. (2023) A New Osteogenic Membrane to Enhance Bone Healing: At the Crossroads between the Periosteum, the Induced Membrane, and the Diamond Concept. Bioengineering, 10, Article 143.
https://doi.org/10.3390/bioengineering10020143
[24]  Liu, Y., Ming, L., Luo, H., Liu, W., Zhang, Y., Liu, H., et al. (2013) Integration of a Calcined Bovine Bone and BMSC-Sheet 3D Scaffold and the Promotion of Bone Regeneration in Large Defects. Biomaterials, 34, 9998-10006.
https://doi.org/10.1016/j.biomaterials.2013.09.040
[25]  Qi, Y., Niu, L., Zhao, T., Shi, Z., Di, T., Feng, G., et al. (2015) Combining Mesenchymal Stem Cell Sheets with Platelet-Rich Plasma Gel/Calcium Phosphate Particles: A Novel Strategy to Promote Bone Regeneration. Stem Cell Research & Therapy, 6, Article No. 256.
https://doi.org/10.1186/s13287-015-0256-1
[26]  Xie, Q., Wang, Z., Huang, Y., Bi, X., Zhou, H., Lin, M., et al. (2015) Characterization of Human Ethmoid Sinus Mucosa Derived Mesenchymal Stem Cells (hESMSCs) and the Application of hESMSCs Cell Sheets in Bone Regeneration. Biomaterials, 66, 67-82.
https://doi.org/10.1016/j.biomaterials.2015.07.013
[27]  Fu, T., Chen, W., Wang, Y., Chang, C., Lin, T. and Wong, C. (2023) Biomimetic Vascularized Adipose-Derived Mesenchymal Stem Cells Bone-Periosteum Graft Enhances Angiogenesis and Osteogenesis in a Male Rabbit Spine Fusion Model. Bone & Joint Research, 12, 722-733.
https://doi.org/10.1302/2046-3758.1212.bjr-2023-0013.r1
[28]  Liu, C., Lou, Y., Sun, Z., Ma, H., Sun, M., Li, S., et al. (2023) 4D Printing of Personalized‐tunable Biomimetic Periosteum with Anisotropic Microstructure for Accelerated Vascularization and Bone Healing. Advanced Healthcare Materials, 12, Article ID: 2202868.
https://doi.org/10.1002/adhm.202202868
[29]  Yu, Y., Wang, Y., Zhang, W., Wang, H., Li, J., Pan, L., et al. (2020) Biomimetic Periosteum-Bone Substitute Composed of Preosteoblast-Derived Matrix and Hydrogel for Large Segmental Bone Defect Repair. Acta Biomaterialia, 113, 317-327.
https://doi.org/10.1016/j.actbio.2020.06.030
[30]  Nan, J., Liu, W., Zhang, K., Sun, Y., Hu, Y. and Lei, P. (2022) Tantalum and Magnesium Nanoparticles Enhance the Biomimetic Properties and Osteo-Angiogenic Effects of PCL Membranes. Frontiers in Bioengineering and Biotechnology, 10, Article 1038250.
https://doi.org/10.3389/fbioe.2022.1038250
[31]  Su, Y., Ye, B., Zeng, L., Xiong, Z., Sun, T., Chen, K., et al. (2022) Small Intestinal Submucosa Biomimetic Periosteum Promotes Bone Regeneration. Membranes, 12, Article 719.
https://doi.org/10.3390/membranes12070719
[32]  Sun, H., Shang, Y., Guo, J., Maihemuti, A., Shen, S., Shi, Y., et al. (2023) Artificial Periosteum with Oriented Surface Nanotopography and High Tissue Adherent Property. ACS Applied Materials & Interfaces, 15, 45549-45560.
https://doi.org/10.1021/acsami.3c07561
[33]  Yang, Z., Yang, Z., Ding, L., Zhang, P., Liu, C., Chen, D., et al. (2022) Self-Adhesive Hydrogel Biomimetic Periosteum to Promote Critical-Size Bone Defect Repair via Synergistic Osteogenesis and Angiogenesis. ACS Applied Materials & Interfaces, 14, 36395-36410.
https://doi.org/10.1021/acsami.2c08400
[34]  Shakeri, H., Haghbin Nazarpak, M., Imani, R. and Tayebi, L. (2023) Poly (l-Lactic Acid)-Based Modified Nanofibrous Membrane with Dual Drug Release Capability for GBR Application. International Journal of Biological Macromolecules, 231, Article 123201.
https://doi.org/10.1016/j.ijbiomac.2023.123201
[35]  Halperin‐Sternfeld, M., Pokhojaev, A., Ghosh, M., Rachmiel, D., Kannan, R., Grinberg, I., et al. (2022) Immunomodulatory Fibrous Hyaluronic Acid‐Fmoc‐Diphenylalanine‐Based Hydrogel Induces Bone Regeneration. Journal of Clinical Periodontology, 50, 200-219.
https://doi.org/10.1111/jcpe.13725
[36]  Sun, H., Dong, J., Wang, Y., Shen, S., Shi, Y., Zhang, L., et al. (2021) Polydopamine-Coated Poly(l-Lactide) Nanofibers with Controlled Release of VEGF and BMP-2 as a Regenerative Periosteum. ACS Biomaterials Science & Engineering, 7, 4883-4897.
https://doi.org/10.1021/acsbiomaterials.1c00246
[37]  He, X., Liu, W., Liu, Y., Zhang, K., Sun, Y., Lei, P., et al. (2022) Nano Artificial Periosteum PLGA/MgO/Quercetin Accelerates Repair of Bone Defects through Promoting Osteogenic-Angiogenic Coupling Effect via Wnt/β-Catenin Pathway. Materials Today Bio, 16, Article 100348.
https://doi.org/10.1016/j.mtbio.2022.100348
[38]  Wan, Q., Jiao, K., Ma, Y., Gao, B., Mu, Z., Wang, Y., et al. (2022) Smart, Biomimetic Periosteum Created from the Cerium (III, IV) Oxide-Mineralized Eggshell Membrane. ACS Applied Materials & Interfaces, 14, 14103-14119.
https://doi.org/10.1021/acsami.2c02079
[39]  Liu, P., Qiu, T., Liu, J., Long, X., Wang, X., Nie, H., et al. (2023) Mechanically Enhanced and Osteobioactive Synthetic Periosteum via Development of Poly(ε-Caprolactone)/Microtantalum Composite. Colloids and Surfaces B: Biointerfaces, 231, Article 113537.
https://doi.org/10.1016/j.colsurfb.2023.113537
[40]  Sun, Y., Liu, T., Hu, H., Xiong, Z., Zhang, K., He, X., et al. (2022) Differential Effect of Tantalum Nanoparticles versus Tantalum Micron Particles on Immune Regulation. Materials Today Bio, 16, Article 100340.
https://doi.org/10.1016/j.mtbio.2022.100340
[41]  Liu, W., Zhang, K., Nan, J., Lei, P., Sun, Y. and Hu, Y. (2023) Nano Artificial Periosteum PCL/Ta/ZnO Accelerates Repair of Periosteum via Antibacterial, Promoting Vascularization and Osteogenesis. Biomaterials Advances, 154, Article 213624.
https://doi.org/10.1016/j.bioadv.2023.213624

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133