全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

结合BiGRU与Bahdanau注意力机制的超宽带室内定位系统研究
Research on Ultra Wide Band Indoor Positioning System Combining BiGRU and Bahdanau Attention Mechanism

DOI: 10.12677/aam.2025.142051, PP. 50-61

Keywords: 超宽带室内定位,双向门控循环单元,Bahdanau注意力机制
Ultra Wide Band Indoor Positioning
, Bidirectional Gated Recurrent Unit, Bahdanau Attention Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

超宽带(Ultra Wide Band, UWB)技术因其高精度和强抗干扰能力,在室内定位领域中有着广泛的应用。然而,在复杂的室内环境中,UWB信号易受多径效应和非视距条件的影响,使得定位精度下降。为此,文章提出了一种基于深度学习的UWB室内定位方法。通过引入双向门控循环单元(Bidirectional Gated Recurrent Unit, BiGRU)与Bahdanau注意力机制的结合模型,充分挖掘UWB信号的时序特征和关键信息。BiGRU利用其在时序数据处理中的优势,有效捕捉UWB信号的动态特征,而Bahdanau注意力机制通过动态权重分配,增强模型对关键特征的关注,从而提高定位精度。实验结果表明,文章提出的模型平均定位误差为6.9 cm,相较于传统的循环神经网络(Recurrent Neural Network, RNN)、长短时记忆(Long Short-Term Memory, LSTM)网络和门控循环单元(Gated Recurrent Unit, GRU),误差减少了约29.59%至42.98%。研究结果表明,结合BiGRU与Bahdanau注意力机制的深度学习模型在复杂环境下具有更高的鲁棒性和定位精度。
Ultra Wide Band (UWB) technology is widely used in indoor positioning due to its high accuracy and strong anti-interference capability. However, in complex indoor environments, UWB signals are susceptible to multipath effects and non-line-of-sight conditions, which degrade positioning accuracy. To address this issue, this paper proposes a deep learning-based UWB indoor positioning method. By introducing a combined model of the Bidirectional Gated Recurrent Unit and Bahdanau attention mechanism, the method effectively exploits the temporal features and key information of UWB signals. BiGRU leverages its advantages in handling sequential data to capture the dynamic characteristics of UWB signals, while the Bahdanau attention mechanism enhances the model’s focus on critical features through dynamic weight allocation, thus improving positioning accuracy. Experimental results show that the average positioning error of the proposed model is 6.9 cm, which represents a reduction of approximately 29.59% to 42.98% compared to traditional Recurrent Neural Network, Long Short-Term Memory Network, and Gated Recurrent Unit. The results demonstrate that the deep learning model combining BiGRU and the Bahdanau attention mechanism offers higher robustness and positioning accuracy in complex environments.

References

[1]  Xu, H.L. and Yang, L.Q. (2008) Ultra-Wideband Technology: Yesterday, Today, and Tomorrow. 2008 IEEE Radio and Wireless Symposium, Orlando, 22-24 January 2008, 715-718.
https://doi.org/10.1109/rws.2008.4463592
[2]  周军, 魏国亮, 田昕, 等. 融合UWB和IMU数据的新型室内定位算法[J]. 小型微型计算机系统, 2021, 42(8): 1741-1746.
[3]  Schmid, L., Salido-Monzu, D. and Wieser, A. (2019) Accuracy Assessment and Learned Error Mitigation of UWB TOF Ranging. 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Pisa, 30 September-3 October 2019, 1-8.
https://doi.org/10.1109/ipin.2019.8911769
[4]  Zwirello, L., Li, X.Y., Zwick, T., Ascher, C., Werling, S. and Trommer, G.F. (2013) Sensor Data Fusion in UWB-Supported Inertial Navigation Systems for Indoor Navigation. 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, 6-10 May 2013, 3154-3159.
https://doi.org/10.1109/icra.2013.6631016
[5]  Li, X., Wang, H., Chen, Z., Jiang, Z. and Luo, J. (2024) UWB-Fi: Pushing Wi-Fi Towards Ultra-Wideband for Fine-Granularity Sensing. Proceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services, Tokyo, 3-7 June 2024, 42-55.
https://doi.org/10.1145/3643832.3661889
[6]  Wang, F. and Lv, T.J. (2008) An Improved Kalman Filter Algorithm for UWB Channel Estimation. 2008 3rd International Conference on Communications and Networking in China, Hangzhou, 25-27 August 2008, 50-54.
https://doi.org/10.1109/chinacom.2008.4684967
[7]  Guo, X., Ansari, N., Hu, F., Shao, Y., Elikplim, N.R. and Li, L. (2020) A Survey on Fusion-Based Indoor Positioning. IEEE Communications Surveys & Tutorials, 22, 566-594.
https://doi.org/10.1109/comst.2019.2951036
[8]  Olejniczak, A., Blaszkiewicz, O., Cwalina, K.K., Rajchowski, P. and Sadowski, J. (2020) Deep Learning Approach for LOS and NLOS Identification in the Indoor Environment. 2020 Baltic URSI Symposium (URSI), Warsaw, 5-7 October 2020, 104-107.
https://doi.org/10.23919/ursi48707.2020.9253757
[9]  Tan Anh Nguyen, D., Lee, H., Joung, J. and Jeong, E. (2020) Convolutional Neural Network-Based UWB System Localization. 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, 21-23 October 2020, 488-490.
https://doi.org/10.1109/ictc49870.2020.9289326
[10]  Poulose, A. and Han, D.S. (2020) UWB Indoor Localization Using Deep Learning LSTM Networks. Applied Sciences, 10, Article No. 6290.
https://doi.org/10.3390/app10186290
[11]  He, S., Yang, B., Liu, T. and Zhang, H. (2024) Multi-Tag UWB Localization with Spatial-Temporal Attention Graph Neural Network. IEEE Transactions on Instrumentation and Measurement, 73, 1-12.
https://doi.org/10.1109/tim.2024.3462984
[12]  He, X., Mo, L. and Wang, Q. (2023) An Attention-Assisted UWB Ranging Error Compensation Algorithm. IEEE Wireless Communications Letters, 12, 421-425.
https://doi.org/10.1109/lwc.2022.3229104
[13]  Poulose, A., Kim, J. and Han, D.S. (2019) A Sensor Fusion Framework for Indoor Localization Using Smartphone Sensors and Wi-Fi RSSI Measurements. Applied Sciences, 9, Article No. 4379.
https://doi.org/10.3390/app9204379
[14]  Raza, U., Khan, A., Kou, R., Farnham, T., Premalal, T., Stanoev, A., et al. (2019) Dataset: Indoor Localization with Narrow-Band, Ultra-Wideband, and Motion Capture Systems. Proceedings of the 2nd Workshop on Data Acquisition to Analysis, New York, 10 November 2019, 34-36.
https://doi.org/10.1145/3359427.3361919

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133