|
滇中高原湖泊水质的年内分异特征及影响因素
|
Abstract:
为分析滇中高原湖泊水质的年内分异特征及影响因素,采用水质指数(WQI)、综合营养指数(TLI)、Mann-Kendall检验和多元回归分析等方法进行研究。结果表明:1) 2021年夏季至2022年春季期间,抚仙湖水质优于杞麓湖与星云湖,星云湖春季水质优于夏季;2) 杞麓湖和星云湖的TLI均表现出夏季最高,春季最低的特征。抚仙湖水体营养盐含量低、总体变化平稳,冬春季节氮磷含量略高于夏秋季节;3) 杞麓湖夏季受氮、磷共同限制,其余时期主要受控于磷限制。星云湖在夏季受到氮限制,秋季和春季受氮、磷共同限制,冬季主要受到磷限制。抚仙湖在夏、秋、冬季受到氮、磷限制,春季转为氮限制。
In order to analyze the intra-annual variability of water quality of lakes in the Central Yunnan Plateau and the factors affecting it, the water quality index (WQI), the comprehensive trophic index (TLI), the Mann-Kendall test and the multiple regression analysis were used to carry out the study. The results showed that: 1) the water quality of Fuxian Lake (FXL) was better than that of Qilu Lake (QLL) and Xingyun Lake (XYL) during the summer of 2021 to the spring of 2022, and the water quality of XYL was better than that of summer in spring; 2) the TLIs of QLL and XYL both showed the highest in the summer and the lowest in the spring. The nutrient content of FXL is low and the overall change is smooth, and the nitrogen and phosphorus content is slightly higher in winter and spring than in summer and fall; 3) QLL is limited by nitrogen and phosphorus in summer, and the rest of the period is mainly controlled by phosphorus limitation. XYL was limited by nitrogen in summer, jointly limited by nitrogen and phosphorus in fall and spring, and mainly limited by phosphorus in winter. FXL is limited by nitrogen and phosphorus in summer, fall and winter, and turns to nitrogen limitation in spring.
[1] | 张运林, 秦伯强, 朱广伟, 等. 论湖泊重要性及我国湖泊面临的主要生态环境问题[J]. 科学通报, 2022, 67(30): 3503-3519. |
[2] | 张闻松, 宋春桥. 中国湖泊分布与变化: 全国尺度遥感监测研究进展与新编目[J]. 遥感学报, 2022, 26(1): 92-103. |
[3] | Duan, Z., Gao, W., Cheng, G., Zhang, Y. and Chang, X. (2024) Warming Surface and Lake Heatwaves as Key Drivers to Harmful Algal Blooms: A Case Study of Lake Dianchi, China. Journal of Hydrology, 632, Article 130971. https://doi.org/10.1016/j.jhydrol.2024.130971 |
[4] | 龚铭, 王百群, 赵方凯, 等. 滇池蓝藻水华时空变化特征及环境影响因素[J]. 水土保持研究, 2024, 31(4): 419-429. |
[5] | 陈小华, 钱晓雍, 李小平, 等. 洱海富营养化时间演变特征(1988-2013年)及社会经济驱动分析[J]. 湖泊科学, 2018, 30(1): 70-78. |
[6] | 郑昕, 陈丽, 仇菲, 等. 砷污染治理背景下阳宗海浮游植物生物量的时空分布模式及驱动因子[J]. 湖泊科学, 2024, 36(1): 34-42. |
[7] | Wu, T., Wang, S., Su, B., Wu, H. and Wang, G. (2021) Understanding the Water Quality Change of the Yilong Lake Based on Comprehensive Assessment Methods. Ecological Indicators, 126, Article 107714. https://doi.org/10.1016/j.ecolind.2021.107714 |
[8] | Wang, Q., Sun, L., Zhu, Y., Wang, S., Duan, C., Yang, C., et al. (2022) Hysteresis Effects of Meteorological Variation-Induced Algal Blooms: A Case Study Based on Satellite-Observed Data from Dianchi Lake, China (1988-2020). Science of the Total Environment, 812, Article 152558. https://doi.org/10.1016/j.scitotenv.2021.152558 |
[9] | 肖茜, 杨昆, 洪亮. 近30a云贵高原湖泊表面水体面积变化遥感监测与时空分析[J]. 湖泊科学, 2018, 30(4): 1083-1096. |
[10] | Jia, Z., Chang, X., Duan, T., Wang, X., Wei, T. and Li, Y. (2021) Water Quality Responses to Rainfall and Surrounding Land Uses in Urban Lakes. Journal of Environmental Management, 298, Article 113514. https://doi.org/10.1016/j.jenvman.2021.113514 |
[11] | 李涛辉, 张文翔, 吕爱锋, 等. 云南省农业生长季热量资源的时空特征[J]. 山地学报, 2023, 41(3): 361-374. |
[12] | Liang, Q., Zhang, H., Ma, S., Han, Q., Cao, Y., Yang, D., et al. (2024) Tracing Soil Erosion History Using Geochemical Signatures in Lake Sediments: Insights from the Southeastern Tibetan Plateau Margin. Catena, 245, Article 108341. https://doi.org/10.1016/j.catena.2024.108341 |
[13] | Zhao, M.M., Wang, S., Chen, Y., Wu, J., Xue, L. and Fan, T.T. (2020) Pollution Status of the Yellow River Tributaries in Middle and Lower Reaches. Science of the Total Environment, 722, Article 137861. https://doi.org/10.1016/j.scitotenv.2020.137861 |
[14] | 王明翠, 刘雪芹, 张建辉. 湖泊富营养化评价方法及分级标准[J]. 中国环境监测, 2002, 18(5): 47-49. |
[15] | Yin, J., Hu, W., Chen, A., Li, T. and Zhang, W. (2024) Human-Caused Increases in Organic Carbon Burial in Plateau Lakes: The Response to Warming Effect. Science of the Total Environment, 937, Article 173556. https://doi.org/10.1016/j.scitotenv.2024.173556 |
[16] | 李静, 陈光杰, 黄林培, 等. 滇西北地区高山湖泊沃迪错近两百年来环境变化及枝角类群落响应[J]. 湖泊科学, 2023, 35(6): 2170-2184. |
[17] | 秦伯强. 浅水湖泊湖沼学与太湖富营养化控制研究[J]. 湖泊科学, 2020, 32(5): 1229-1243. |
[18] | 吴光红, 邱梦璇, 李建玲, 等. 辽东湾入海河流水质时空变化与污染物来源分析[J]. 海洋学报, 2023, 45(9): 177-188. |
[19] | 张曼, 殷鹏, 支鸣强, 等. 太湖藻型及草型湖区底泥内源污染及释放机制研究[J]. 环境科学学报, 2023, 43(6): 247-257. |
[20] | 屈宁, 邓建明, 张祯, 等. 2015~2020年洪泽湖浮游植物群落结构及其环境影响因子[J]. 环境科学, 2022, 43(6): 3097-3105. |
[21] | Zhao, L., Zhu, R., Zhou, Q., Jeppesen, E. and Yang, K. (2023) Trophic Status and Lake Depth Play Important Roles in Determining the Nutrient-Chlorophyll a Relationship: Evidence from Thousands of Lakes Globally. Water Research, 242, Article 120182. https://doi.org/10.1016/j.watres.2023.120182 |
[22] | Guildford, S.J. and Hecky, R.E. (2000) Total Nitrogen, Total Phosphorus, and Nutrient Limitation in Lakes and Oceans: Is There a Common Relationship? Limnology and Oceanography, 45, 1213-1223. https://doi.org/10.4319/lo.2000.45.6.1213 |