Prostate cancer (PCa) is the second most common type of cancer among men worldwide and one of the leading causes of cancer-related deaths. According to data from the World Health Organization (WHO), this cancer causes hundreds of thousands of new cases and tens of thousands of male deaths globally each year. The incidence of PCa varies across different regions and populations, generally being higher in developed countries. This disparity may be attributed to lifestyle factors and the widespread availability of screening and diagnostic technologies. Prostate-specific membrane antigen (PSMA) is a membrane-bound enzyme predominantly expressed in prostate tissue and PCa cells, with lower expression in normal tissues. This high expression makes PSMA a critical target for the diagnosis and treatment of PCa, particularly in the field of molecular imaging and radiopharmaceutical therapy. Recently, various studies have emerged on radiopharmaceuticals developed based on PSMA ligands, which can be used to specifically identify and locate PCa cells. Research on the radiomics of these novel drugs has also been updated. This article will discuss the role and limitations of PSMA PET in the diagnosis and management of PCa treatment.
References
[1]
Culp, M.B., Soerjomataram, I., Efstathiou, J.A., Bray, F. and Jemal, A. (2020) Recent Global Patterns in Prostate Cancer Incidence and Mortality Rates. EuropeanUrology, 77, 38-52. https://doi.org/10.1016/j.eururo.2019.08.005
[2]
Horoszewicz, J.S., Kawinski, E. and Murphy, G.P. (1987) Monoclonal Antibodies to a New Antigenic Marker in Epithelial Prostatic Cells and Serum of Prostatic Cancer Patients. Anticancer Research, 7, 927-935.
[3]
Bostwick, D.G., Pacelli, A., Blute, M., Roche, P. and Murphy, G.P. (1998) Prostate Specific Membrane Antigen Expression in Prostatic Intraepithelial Neoplasia and Adenocarcinoma. Cancer, 82, 2256-2261. https://doi.org/10.1002/(sici)1097-0142(19980601)82:11<2256::aid-cncr22>3.0.co;2-s
[4]
Silver, D.A., Pellicer, I., Fair, W.R., Heston, W.D. and Cordon-Cardo, C. (1997) Prostate-Specific Membrane Antigen Expression in Normal and Malignant Human Tissues. Clinical Cancer Research, 3, 81-85.
[5]
Pinto, J.T., Suffoletto, B.P., Berzin, T.M., Qiao, C.H., Lin, S., Tong, W.P., et al. (1996) Prostate-Specific Membrane Antigen: A Novel Folate Hydrolase in Human Prostatic Carcinoma Cells. Clinical Cancer Research, 2, 1445-1451.
[6]
Kane, C.J., Amling, C.L., Johnstone, P.A.S., Pak, N., Lance, R.S., Thrasher, J.B., etal. (2003) Limited Value of Bone Scintigraphy and Computed Tomography in Assessing Biochemical Failure after Radical Prostatectomy. Urology, 61, 607-611. https://doi.org/10.1016/s0090-4295(02)02411-1
[7]
Jilg, C.A., Schultze-Seemann, W., Drendel, V., Vach, W., Wieser, G., Krauss, T., etal. (2014) Detection of Lymph Node Metastasis in Patients with Nodal Prostate Cancer Relapse Using 18F/11C-Choline Positron Emission Tomography/Computerized Tomography. JournalofUrology, 192, 103-111. https://doi.org/10.1016/j.juro.2013.12.054
[8]
Renard-Penna, R., Zhang-Yin, J., Montagne, S., Aupin, L., Bruguière, E., Labidi, M., etal. (2022) Targeting Local Recurrence after Surgery with MRI Imaging for Prostate Cancer in the Setting of Salvage Radiation Therapy. FrontiersinOncology, 12, Article 775387. https://doi.org/10.3389/fonc.2022.775387
[9]
Sella, T., Schwartz, L.H. and Hricak, H. (2006) Retained Seminal Vesicles after Radical Prostatectomy: Frequency, MRI Characteristics, and Clinical Relevance. AmericanJournalofRoentgenology, 186, 539-546. https://doi.org/10.2214/ajr.04.1770
[10]
Briganti, A., Abdollah, F., Nini, A., Suardi, N., Gallina, A., Capitanio, U., etal. (2012) Performance Characteristics of Computed Tomography in Detecting Lymph Node Metastases in Contemporary Patients with Prostate Cancer Treated with Extended Pelvic Lymph Node Dissection. EuropeanUrology, 61, 1132-1138. https://doi.org/10.1016/j.eururo.2011.11.008
[11]
De Visschere, P.J.L., Standaert, C., Fütterer, J.J., Villeirs, G.M., Panebianco, V., Walz, J., etal. (2019) A Systematic Review on the Role of Imaging in Early Recurrent Prostate Cancer. EuropeanUrologyOncology, 2, 47-76. https://doi.org/10.1016/j.euo.2018.09.010
[12]
Mason, B.R., Eastham, J.A., Davis, B.J., Mynderse, L.A., Pugh, T.J., Lee, R.J., etal. (2019) Current Status of MRI and PET in the NCCN Guidelines for Prostate Cancer. JournaloftheNationalComprehensiveCancerNetwork, 17, 506-513. https://doi.org/10.6004/jnccn.2019.7306
[13]
Notley, M., Yu, J., Fulcher, A.S., Turner, M.A., Cockrell, C.H. and Nguyen, D. (2015) Diagnosis of Recurrent Prostate Cancer and Its Mimics at Multiparametric Prostate MRI. TheBritishJournalofRadiology, 88, Article 20150362. https://doi.org/10.1259/bjr.20150362
[14]
Jadvar, H. (2013) Imaging Evaluation of Prostate Cancer with 18F-Fluorodeoxyglucose PET/CT: Utility and Limitations. EuropeanJournalofNuclearMedicineandMolecularImaging, 40, 5-10. https://doi.org/10.1007/s00259-013-2361-7
[15]
Biscontini, G., Romagnolo, C., Cottignoli, C., Palucci, A., Fringuelli, F.M., Caldarella, C., etal. (2021) 18F-Fluciclovine Positron Emission Tomography in Prostate Cancer: A Systematic Review and Diagnostic Meta-Analysis. Diagnostics, 11, Article 304. https://doi.org/10.3390/diagnostics11020304
[16]
Farolfi, A., Calderoni, L., Mattana, F., Mei, R., Telo, S., Fanti, S., etal. (2021) Current and Emerging Clinical Applications of PSMA PET Diagnostic Imaging for Prostate Cancer. JournalofNuclearMedicine, 62, 596-604. https://doi.org/10.2967/jnumed.120.257238
[17]
Hope, T.A., Goodman, J.Z., Allen, I.E., Calais, J., Fendler, W.P. and Carroll, P.R. (2018) Metaanalysis of 68Ga-PSMA-11PET Accuracy for the Detection of Prostate Cancer Validated by Histopathology. JournalofNuclearMedicine, 60, 786-793. https://doi.org/10.2967/jnumed.118.219501
[18]
Zukotynski, K.A. and Kuo, P.H. (2022) 18F-DCFPyL PET/CT in Men with Prostate Cancer. Radiology, 305, 429-430. https://doi.org/10.1148/radiol.221536
[19]
Kuten, J., Fahoum, I., Savin, Z., Shamni, O., Gitstein, G., Hershkovitz, D., etal. (2019) Head-to-Head Comparison of 68Ga-PSMA-11 with 18F-PSMA-1007 PET/CT in Staging Prostate Cancer Using Histopathology and Immunohistochemical Analysis as a Reference Standard. JournalofNuclearMedicine, 61, 527-532. https://doi.org/10.2967/jnumed.119.234187
[20]
Cytawa, W., Seitz, A.K., Kircher, S., Fukushima, K., Tran-Gia, J., Schirbel, A., etal. (2019) 68Ga-Psma I&T PET/CT for Primary Staging of Prostate Cancer. EuropeanJournalofNuclearMedicineandMolecularImaging, 47, 168-177. https://doi.org/10.1007/s00259-019-04524-z
[21]
Surasi, D.S., Eiber, M., Maurer, T., Preston, M.A., Helfand, B.T., Josephson, D., etal. (2023) Diagnostic Performance and Safety of Positron Emission Tomography with 18F-rhPSMA-7.3 in Patients with Newly Diagnosed Unfavourable Intermediate-to Very-High-Risk Prostate Cancer: Results from a Phase 3, Prospective, Multicentre Study (LIGHTHOUSE). EuropeanUrology, 84, 361-370. https://doi.org/10.1016/j.eururo.2023.06.018
[22]
Duan, H., Moradi, F., Davidzon, G.A., Liang, T., Song, H., Loening, A.M., etal. (2024) 68Ga-RM2 PET-MRI versus MRI Alone for Evaluation of Patients with Biochemical Recurrence of Prostate Cancer: A Single-Centre, Single-Arm, Phase 2/3 Imaging Trial. TheLancetOncology, 25, 501-508. https://doi.org/10.1016/s1470-2045(24)00069-x
[23]
Wieser, G., Mansi, R., Grosu, A.L., Schultze-Seemann, W., Dumont-Walter, R.A., Meyer, P.T., etal. (2014) Positron Emission Tomography (PET) Imaging of Prostate Cancer with a Gastrin Releasing Peptide Receptor Antagonist—From Mice to Men. Theranostics, 4, 412-419. https://doi.org/10.7150/thno.7324
[24]
Matlaga, B.R., Eskew, L.A. and McCullough, D.L. (2003) Prostate Biopsy: Indications and Technique. JournalofUrology, 169, 12-19. https://doi.org/10.1016/s0022-5347(05)64024-4
[25]
Cornford, P., van den Bergh, R.C.N., Briers, E., Van den Broeck, T., Brunckhorst, O., Darraugh, J., etal. (2024) EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer—2024 Update. Part I: Screening, Diagnosis, and Local Treatment with Curative Intent. EuropeanUrology, 86, 148-163. https://doi.org/10.1016/j.eururo.2024.03.027
[26]
Stefanova, V., Buckley, R., Flax, S., Spevack, L., Hajek, D., Tunis, A., etal. (2019) Transperineal Prostate Biopsies Using Local Anesthesia: Experience with 1,287 Patients. Prostate Cancer Detection Rate, Complications and Patient Tolerability. JournalofUrology, 201, 1121-1126. https://doi.org/10.1097/ju.0000000000000156
[27]
Rouvière, O., Puech, P., Renard-Penna, R., Claudon, M., Roy, C., Mège-Lechevallier, F., etal. (2019) Use of Prostate Systematic and Targeted Biopsy on the Basis of Multiparametric MRI in Biopsy-Naive Patients (MRI-FIRST): A Prospective, Multicentre, Paired Diagnostic Study. TheLancetOncology, 20, 100-109. https://doi.org/10.1016/s1470-2045(18)30569-2
[28]
Privé, B.M., Israël, B., Janssen, M.J.R., van der Leest, M.M.G., de Rooij, M., van Ipenburg, J.A., etal. (2024) Multiparametric MRI and 18F-PSMA-1007 PET/CT for the Detection of Clinically Significant Prostate Cancer. Radiology, 311, e231879. https://doi.org/10.1148/radiol.231879
[29]
Chow, K.M., So, W.Z., Lee, H.J., Lee, A., Yap, D.W.T., Takwoingi, Y., etal. (2023) Head-to-Head Comparison of the Diagnostic Accuracy of Prostate-Specific Membrane Antigen Positron Emission Tomography and Conventional Imaging Modalities for Initial Staging of Intermediate-to High-Risk Prostate Cancer: A Systematic Review and Meta-Analysis. EuropeanUrology, 84, 36-48. https://doi.org/10.1016/j.eururo.2023.03.001
[30]
Sonni, I., Felker, E.R., Lenis, A.T., Sisk, A.E., Bahri, S., Allen-Auerbach, M., etal. (2021) Head-to-Head Comparison of 68Ga-PSMA-11 PET/CT and MPMRI with a Histopathology Gold Standard in the Detection, Intraprostatic Localization, and Determination of Local Extension of Primary Prostate Cancer: Results from a Prospective Single-Center Imaging Trial. JournalofNuclearMedicine, 63, 847-854. https://doi.org/10.2967/jnumed.121.262398
[31]
Doan, P., Counter, W., Papa, N., Sheehan‐Dare, G., Ho, B., Lee, J., etal. (2022) Synchronous vs Independent Reading of Prostate‐Specific Membrane Antigen Positron Emission Tomography (PSMA‐PET) and Magnetic Resonance Imaging (MRI) to Improve Diagnosis of Prostate Cancer. BJUInternational, 131, 588-595. https://doi.org/10.1111/bju.15929
[32]
Eiber, M., Weirich, G., Holzapfel, K., Souvatzoglou, M., Haller, B., Rauscher, I., etal. (2016) Simultaneous 68Ga-PSMA HBED-CC PET/MRI Improves the Localization of Primary Prostate Cancer. EuropeanUrology, 70, 829-836. https://doi.org/10.1016/j.eururo.2015.12.053
[33]
Franklin, A., Yaxley, W.J., Raveenthiran, S., Coughlin, G., Gianduzzo, T., Kua, B., etal. (2020) Histological Comparison between Predictive Value of Preoperative 3‐T Multiparametric MRI and 68Ga‐PSMA PET/CT Scan for Pathological Outcomes at Radical Prostatectomy and Pelvic Lymph Node Dissection for Prostate Cancer. BJUInternational, 127, 71-79. https://doi.org/10.1111/bju.15134
[34]
Wu, H., Xu, T., Wang, X., Yu, Y., Fan, Z., Li, D., etal. (2020) Diagnostic Performance of 68Gallium Labelled Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography and Magnetic Resonance Imaging for Staging the Prostate Cancer with Intermediate or High Risk Prior to Radical Prostatectomy: A Systematic Review and Meta-Analysis. TheWorldJournalofMen’sHealth, 38, 208-219. https://doi.org/10.5534/wjmh.180124
[35]
Ling, S.W., de Jong, A.C., Schoots, I.G., Nasserinejad, K., Busstra, M.B., van der Veldt, A.A.M., etal. (2021) Comparison of 68Ga-Labeled Prostate-Specific Membrane Antigen Ligand Positron Emission Tomography/Magnetic Resonance Imaging and Positron Emission Tomography/Computed Tomography for Primary Staging of Prostate Cancer: A Systematic Review and Meta-Analysis. EuropeanUrologyOpenScience, 33, 61-71. https://doi.org/10.1016/j.euros.2021.09.006
[36]
Gandaglia, G., Ploussard, G., Valerio, M., Mattei, A., Fiori, C., Fossati, N., etal. (2019) A Novel Nomogram to Identify Candidates for Extended Pelvic Lymph Node Dissection among Patients with Clinically Localized Prostate Cancer Diagnosed with Magnetic Resonance Imaging-Targeted and Systematic Biopsies. EuropeanUrology, 75, 506-514. https://doi.org/10.1016/j.eururo.2018.10.012
[37]
Meijer, D., van Leeuwen, P.J., Roberts, M.J., Siriwardana, A.R., Morton, A., Yaxley, J.W., etal. (2021) External Validation and Addition of Prostate-Specific Membrane Antigen Positron Emission Tomography to the Most Frequently Used Nomograms for the Prediction of Pelvic Lymph-Node Metastases: An International Multicenter Study. EuropeanUrology, 80, 234-242. https://doi.org/10.1016/j.eururo.2021.05.006
[38]
Vis, A., Meijer, D., Roberts, M.J., Siriwardana, A.R., Morton, A., Yaxley, J.W., etal. (2024) Development and External Validation of a Novel Nomogram to Predict the Probability of Pelvic Lymph-Node Metastases in Prostate Cancer Patients Using Magnetic Resonance Imaging and Molecular Imaging with Prostate-Specific Membrane Antigen Positron Emission. EuropeanUrology, 85, S483-S484. https://doi.org/10.1016/s0302-2838(24)00422-6
[39]
Rauscher, I., Krönke, M., König, M., Gafita, A., Maurer, T., Horn, T., etal. (2019) Matched-Pair Comparison of 68Ga-PSMA-11 PET/CT and 18F-PSMA-1007 PET/CT: Frequency of Pitfalls and Detection Efficacy in Biochemical Recurrence after Radical Prostatectomy. JournalofNuclearMedicine, 61, 51-57. https://doi.org/10.2967/jnumed.119.229187
[40]
Kroenke, M., Mirzoyan, L., Horn, T., Peeken, J.C., Wurzer, A., Wester, H., etal. (2020) Matched-Pair Comparison of 68Ga-PSMA-11 and 18F-rhPSMA-7 PET/CT in Patients with Primary and Biochemical Recurrence of Prostate Cancer: Frequency of Non-Tumor-Related Uptake and Tumor Positivity. JournalofNuclearMedicine, 62, 1082-1088. https://doi.org/10.2967/jnumed.120.251447
[41]
Gao, X., Tang, Y., Chen, M., Li, J., Yin, H., Gan, Y., etal. (2023) A Prospective Comparative Study of [68Ga]Ga-RM26 and [68Ga]Ga-PSMA-617 PET/CT Imaging in Suspicious Prostate Cancer. EuropeanJournalofNuclearMedicineandMolecularImaging, 50, 2177-2187. https://doi.org/10.1007/s00259-023-06142-2
[42]
Jiang, Z., Guo, J., Hu, L., Yang, S., Meng, B. and Tang, Q. (2024) Diagnostic Performance of 18F-DCFPyL PET vs. 68Ga-PSMA PET/CT in Patients with Suspected Prostate Cancer: A Systemic Review and Meta-Analysis. OncologyLetters, 27, Article No. 188. https://doi.org/10.3892/ol.2024.14321
Seifert, R., Emmett, L., Rowe, S.P., Herrmann, K., Hadaschik, B., Calais, J., etal. (2023) Second Version of the Prostate Cancer Molecular Imaging Standardized Evaluation Framework Including Response Evaluation for Clinical Trials (PROMISE V2). EuropeanUrology, 83, 405-412. https://doi.org/10.1016/j.eururo.2023.02.002
[45]
Donswijk, M.L., Ettema, R.H., Meijer, D., Wondergem, M., Cheung, Z., Bekers, E.M., etal. (2024) The Accuracy and Intra-and Interobserver Variability of PSMA PET/CT for the Local Staging of Primary Prostate Cancer. EuropeanJournalofNuclearMedicineandMolecularImaging, 51, 1741-1752. https://doi.org/10.1007/s00259-024-06594-0
[46]
Duan, H., Davidzon, G.A., Moradi, F., Liang, T., Song, H. and Iagaru, A. (2023) Modified PROMISE Criteria for Standardized Interpretation of Gastrin-Releasing Peptide Receptor (GRPR)-Targeted PET. EuropeanJournalofNuclearMedicineandMolecularImaging, 50, 4087-4095. https://doi.org/10.1007/s00259-023-06385-z
[47]
García Vicente, A.M., Lucas Lucas, C., Pérez-Beteta, J., Borrelli, P., García Zoghby, L., Amo-Salas, M., etal. (2024) Analytical Performance Validation of Apromise Platform for Prostate Tumor Burden, Index and Dominant Tumor Assessment with 18F-DCFPyL PET/CT. a Pilot Study. ScientificReports, 14, Article No. 3001. https://doi.org/10.1038/s41598-024-53683-z
[48]
Karpinski, M.J., Hüsing, J., Claassen, K., Möller, L., Kajüter, H., Oesterling, F., etal. (2024) Combining PSMA-PET and PROMISE to Re-Define Disease Stage and Risk in Patients with Prostate Cancer: A Multicentre Retrospective Study. TheLancetOncology, 25, 1188-1201. https://doi.org/10.1016/s1470-2045(24)00326-7
[49]
Tilki, D., van den Bergh, R.C.N., Briers, E., Van den Broeck, T., Brunckhorst, O., Darraugh, J., etal. (2024) EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer. Part II—2024 Update: Treatment of Relapsing and Metastatic Prostate Cancer. EuropeanUrology, 86, 164-182. https://doi.org/10.1016/j.eururo.2024.04.010
[50]
Amling, C.L., Bergstralh, E.J., Blute, M.L., Slezak, J.M. and Zincke, H. (2001) Defining Prostate Specific Antigen Progression after Radical Prostatectomy: What Is the Most Appropriate CUT Point? JournalofUrology, 165, 1146-1151. https://doi.org/10.1016/s0022-5347(05)66452-x
[51]
Toussi, A., Stewart-Merrill, S.B., Boorjian, S.A., Psutka, S.P., Thompson, R.H., Frank, I., etal. (2016) Standardizing the Definition of Biochemical Recurrence after Radical Prostatectomy—What Prostate Specific Antigen Cut Point Best Predicts a Durable Increase and Subsequent Systemic Progression? JournalofUrology, 195, 1754-1759. https://doi.org/10.1016/j.juro.2015.12.075
[52]
Stephenson, A.J., Kattan, M.W., Eastham, J.A., Dotan, Z.A., Bianco, F.J., Lilja, H., etal. (2006) Defining Biochemical Recurrence of Prostate Cancer after Radical Prostatectomy: A Proposal for a Standardized Definition. JournalofClinicalOncology, 24, 3973-3978. https://doi.org/10.1200/jco.2005.04.0756
[53]
Calais, J., Czernin, J., Cao, M., Kishan, A.U., Hegde, J.V., Shaverdian, N., etal. (2017) 68Ga-PSMA-11 PET/CT Mapping of Prostate Cancer Biochemical Recurrence after Radical Prostatectomy in 270 Patients with a PSA Level of Less than 1.0 ng/mL: Impact on Salvage Radiotherapy Planning. JournalofNuclearMedicine, 59, 230-237. https://doi.org/10.2967/jnumed.117.201749
[54]
Farolfi, A., Ceci, F., Castellucci, P., Graziani, T., Siepe, G., Lambertini, A., etal. (2018) 68Ga-PSMA-11 PET/CT in Prostate Cancer Patients with Biochemical Recurrence after Radical Prostatectomy and PSA <0.5 ng/mL. Efficacy and Impact on Treatment Strategy. EuropeanJournalofNuclearMedicineandMolecularImaging, 46, 11-19. https://doi.org/10.1007/s00259-018-4066-4
[55]
Cerci, J.J., Fanti, S., Lobato, E.E., Kunikowska, J., Alonso, O., Medina, S., etal. (2021) Diagnostic Performance and Clinical Impact of 68Ga-PSMA-11 PET/CT Imaging in Early Relapsed Prostate Cancer after Radical Therapy: A Prospective Multicenter Study (IAEA-PSMA Study). JournalofNuclearMedicine, 63, 240-247. https://doi.org/10.2967/jnumed.120.261886
[56]
Jeet, V., Parkinson, B., Song, R., Sharma, R. and Hoyle, M. (2023) Histopathologically Validated Diagnostic Accuracy of PSMA-PET/CT in the Primary and Secondary Staging of Prostate Cancer and the Impact of PSMA-PET/CT on Clinical Management: A Systematic Review and Meta-Analysis. SeminarsinNuclearMedicine, 53, 706-718. https://doi.org/10.1053/j.semnuclmed.2023.02.006
[57]
Perera, M., Papa, N., Roberts, M., Williams, M., Udovicich, C., Vela, I., etal. (2020) Gallium-68 Prostate-Specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer—Updated Diagnostic Utility, Sensitivity, Specificity, and Distribution of Prostate-Specific Membrane Antigen-Avid Lesions: A Systematic Review and Meta-Analysis. EuropeanUrology, 77, 403-417. https://doi.org/10.1016/j.eururo.2019.01.049
[58]
Caire, A.A., Sun, L., Ode, O., Stackhouse, D.A., Maloney, K., Donatucci, C., etal. (2009) Delayed Prostate-Specific Antigen Recurrence after Radical Prostatectomy: How to Identify and What Are Their Clinical Outcomes? Urology, 74, 643-647. https://doi.org/10.1016/j.urology.2009.02.049
[59]
Crocerossa, F., Marchioni, M., Novara, G., Carbonara, U., Ferro, M., Russo, G.I., etal. (2021) Detection Rate of Prostate Specific Membrane Antigen Tracers for Positron Emission Tomography/Computerized Tomography in Prostate Cancer Biochemical Recurrence: A Systematic Review and Network Meta-Analysis. JournalofUrology, 205, 356-369. https://doi.org/10.1097/ju.0000000000001369
[60]
Eiber, M., Maurer, T., Souvatzoglou, M., Beer, A.J., Ruffani, A., Haller, B., etal. (2015) Evaluation of Hybrid 68Ga-PSMA Ligand PET/CT in 248 Patients with Biochemical Recurrence after Radical Prostatectomy. JournalofNuclearMedicine, 56, 668-674. https://doi.org/10.2967/jnumed.115.154153
[61]
Emmett, L., van Leeuwen, P.J., Nandurkar, R., Scheltema, M.J., Cusick, T., Hruby, G., etal. (2017) Treatment Outcomes from 68Ga-PSMA PET/CT-Informed Salvage Radiation Treatment in Men with Rising PSA after Radical Prostatectomy: Prognostic Value of a Negative PSMA PET. JournalofNuclearMedicine, 58, 1972-1976. https://doi.org/10.2967/jnumed.117.196683
[62]
Emmett, L., Tang, R., Nandurkar, R., Hruby, G., Roach, P., Watts, J.A., etal. (2019) 3-Year Freedom from Progression after 68Ga-PSMA PET/CT-Triaged Management in Men with Biochemical Recurrence after Radical Prostatectomy: Results of a Prospective Multicenter Trial. JournalofNuclearMedicine, 61, 866-872. https://doi.org/10.2967/jnumed.119.235028
[63]
Horn, T., Krönke, M., Rauscher, I., Haller, B., Robu, S., Wester, H., etal. (2019) Single Lesion on Prostate-Specific Membrane Antigen-Ligand Positron Emission Tomography and Low Prostate-Specific Antigen Are Prognostic Factors for a Favorable Biochemical Response to Prostate-Specific Membrane Antigen-Targeted Radioguided Surgery in Recurrent Prostate Cancer. EuropeanUrology, 76, 517-523. https://doi.org/10.1016/j.eururo.2019.03.045
[64]
McCarthy, M., Francis, R., Tang, C., Watts, J. and Campbell, A. (2019) A Multicenter Prospective Clinical Trial of 68Gallium PSMA HBED-CC PET-CT Restaging in Biochemically Relapsed Prostate Carcinoma: Oligometastatic Rate and Distribution Compared with Standard Imaging. InternationalJournalofRadiationOncology∙Biology∙Physics, 104, 801-808. https://doi.org/10.1016/j.ijrobp.2019.03.014
[65]
Cornford, P., van den Bergh, R.C.N., Briers, E., Van den Broeck, T., Cumberbatch, M.G., De Santis, M., etal. (2021) EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Part II—2020 Update: Treatment of Relapsing and Metastatic Prostate Cancer. EuropeanUrology, 79, 263-282. https://doi.org/10.1016/j.eururo.2020.09.046
[66]
Fendler, W.P., Weber, M., Iravani, A., Hofman, M.S., Calais, J., Czernin, J., etal. (2019) Prostate-Specific Membrane Antigen Ligand Positron Emission Tomography in Men with Nonmetastatic Castration-Resistant Prostate Cancer. ClinicalCancerResearch, 25, 7448-7454. https://doi.org/10.1158/1078-0432.ccr-19-1050
[67]
Fourquet, A., Aveline, C., Cussenot, O., Créhange, G., Montravers, F., Talbot, J., etal. (2020) 68Ga-PSMA-11 PET/CT in Restaging Castration-Resistant Nonmetastatic Prostate Cancer: Detection Rate, Impact on Patients’ Disease Management and Adequacy of Impact. ScientificReports, 10, Article No. 2104. https://doi.org/10.1038/s41598-020-58975-8
[68]
Afshar-Oromieh, A., Hetzheim, H., Kratochwil, C., Benesova, M., Eder, M., Neels, O.C., etal. (2015) The Theranostic PSMA Ligand PSMA-617 in the Diagnosis of Prostate Cancer by PET/CT: Biodistribution in Humans, Radiation Dosimetry, and First Evaluation of Tumor Lesions. JournalofNuclearMedicine, 56, 1697-1705. https://doi.org/10.2967/jnumed.115.161299
[69]
Sartor, O., de Bono, J., Chi, K.N., Fizazi, K., Herrmann, K., Rahbar, K., etal. (2021) Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. NewEnglandJournalofMedicine, 385, 1091-1103. https://doi.org/10.1056/nejmoa2107322
Al-Ibraheem, A. and Scott, A.M. (2023) 161Tb-PSMA Unleashed: A Promising New Player in the Theranostics of Prostate Cancer. NuclearMedicineandMolecularImaging, 57, 168-171. https://doi.org/10.1007/s13139-023-00804-7
[73]
Schaefer-Schuler, A., Burgard, C., Blickle, A., Maus, S., Petrescu, C., Petto, S., etal. (2024) [161Tb]Tb-PSMA-617 Radioligand Therapy in Patients with mCRPC: Preliminary Dosimetry Results and Intra-Individual Head-To-Head Comparison to [177Lu]Lu-PSMA-617. Theranostics, 14, 1829-1840. https://doi.org/10.7150/thno.92273
[74]
Delgadillo, R., Ford, J.C., Abramowitz, M.C., Dal Pra, A., Pollack, A. and Stoyanova, R. (2020) The Role of Radiomics in Prostate Cancer Radiotherapy. StrahlentherapieundOnkologie, 196, 900-912. https://doi.org/10.1007/s00066-020-01679-9
[75]
Ferro, M., de Cobelli, O., Vartolomei, M.D., Lucarelli, G., Crocetto, F., Barone, B., etal. (2021) Prostate Cancer Radiogenomics—From Imaging to Molecular Characterization. InternationalJournalofMolecularSciences, 22, Article 9971. https://doi.org/10.3390/ijms22189971
[76]
Penzkofer, T., Padhani, A.R., Turkbey, B., Haider, M.A., Huisman, H., Walz, J., etal. (2021) ESUR/ESUI Position Paper: Developing Artificial Intelligence for Precision Diagnosis of Prostate Cancer Using Magnetic Resonance Imaging. EuropeanRadiology, 31, 9567-9578. https://doi.org/10.1007/s00330-021-08021-6
[77]
Solari, E.L., Gafita, A., Schachoff, S., Bogdanović, B., Villagrán Asiares, A., Amiel, T., etal. (2021) The Added Value of PSMA PET/MR Radiomics for Prostate Cancer Staging. EuropeanJournalofNuclearMedicineandMolecularImaging, 49, 527-538. https://doi.org/10.1007/s00259-021-05430-z
[78]
Zhao, L., Bao, J., Qiao, X., Jin, P., Ji, Y., Li, Z., etal. (2022) Predicting Clinically Significant Prostate Cancer with a Deep Learning Approach: A Multicentre Retrospective Study. EuropeanJournalofNuclearMedicineandMolecularImaging, 50, 727-741. https://doi.org/10.1007/s00259-022-06036-9
[79]
Chan, T.H., Haworth, A., Wang, A., Osanlouy, M., Williams, S., Mitchell, C., etal. (2023) Detecting Localised Prostate Cancer Using Radiomic Features in PSMA PET and Multiparametric MRI for Biologically Targeted Radiation Therapy. EJNMMIResearch, 13, Article No. 34. https://doi.org/10.1186/s13550-023-00984-5
[80]
Zamboglou, C., Bettermann, A.S., Gratzke, C., Mix, M., Ruf, J., Kiefer, S., etal. (2020) Uncovering the Invisible—Prevalence, Characteristics, and Radiomics Feature-Based Detection of Visually Undetectable Intraprostatic Tumor Lesions in 68GaPSMA-11 PET Images of Patients with Primary Prostate Cancer. EuropeanJournalofNuclearMedicineandMolecularImaging, 48, 1987-1997. https://doi.org/10.1007/s00259-020-05111-3
[81]
Yi, Z., Hu, S., Lin, X., Zou, Q., Zou, M., Zhang, Z., etal. (2021) Machine Learning-Based Prediction of Invisible Intraprostatic Prostate Cancer Lesions on 68Ga-PSMA-11 PET/CT in Patients with Primary Prostate Cancer. EuropeanJournalofNuclearMedicineandMolecularImaging, 49, 1523-1534. https://doi.org/10.1007/s00259-021-05631-6
[82]
Muehlematter, U.J., Schweiger, L., Ferraro, D.A., Hermanns, T., Maurer, T., Heck, M.M., etal. (2023) Development and External Validation of a Multivariable [68Ga]Ga-PSMA-11 PET-Based Prediction Model for Lymph Node Involvement in Men with Intermediate or High-Risk Prostate Cancer. EuropeanJournalofNuclearMedicineandMolecularImaging, 50, 3137-3146. https://doi.org/10.1007/s00259-023-06278-1
[83]
Zamboglou, C., Bettermann, A.S., Gratzke, C., Mix, M., Ruf, J., Kiefer, S., etal. (2020) Uncovering the Invisible—Prevalence, Characteristics, and Radiomics Feature-Based Detection of Visually Undetectable Intraprostatic Tumor Lesions in 68GaPSMA-11 PET Images of Patients with Primary Prostate Cancer. EuropeanJournalofNuclearMedicineandMolecularImaging, 48, 1987-1997. https://doi.org/10.1007/s00259-020-05111-3
[84]
Alongi, P., Stefano, A., Comelli, A., Laudicella, R., Scalisi, S., Arnone, G., etal. (2021) Radiomics Analysis of 18F-Choline PET/CT in the Prediction of Disease Outcome in High-Risk Prostate Cancer: An Explorative Study on Machine Learning Feature Classification in 94 Patients. EuropeanRadiology, 31, 4595-4605. https://doi.org/10.1007/s00330-020-07617-8
[85]
Cysouw, M.C.F., Jansen, B.H.E., van de Brug, T., Oprea-Lager, D.E., Pfaehler, E., de Vries, B.M., etal. (2020) Machine Learning-Based Analysis of [18F]DCFPyL PET Radiomics for Risk Stratification in Primary Prostate Cancer. EuropeanJournalofNuclearMedicineandMolecularImaging, 48, 340-349. https://doi.org/10.1007/s00259-020-04971-z