Hydrogels, as a novel class of biomaterials, exhibit broad application prospects and are widely used in tissue engineering. In the field of periodontology within dental medicine, hydrogels can be employed for periodontal tissue regeneration to repair the damage caused by periodontitis. At present, various hydrogels have been developed to control periodontal inflammation and repair periodontal tissues. This article, based on domestic and international literature, provides a brief review of hydrogels used in periodontal tissue regeneration.
References
[1]
Meng, H.X. (2008) Periodontology. People’s Medical Publishing House.
[2]
WICHTERLE, O. and LÍM, D. (1960) Hydrophilic Gels for Biological Use. Nature, 185, 117-118. https://doi.org/10.1038/185117a0
[3]
Kopecek, J. (2009) Hydrogels: From Soft Contact Lenses and Implants to Self‐assembled Nanomaterials. JournalofPolymerSciencePartA: PolymerChemistry, 47, 5929-5946. https://doi.org/10.1002/pola.23607
[4]
Sharma, S. and Tiwari, S. (2020) RETRACTED: A Review on Biomacromolecular Hydrogel Classification and Its Applications. InternationalJournalofBiologicalMacromolecules, 162, 737-747. https://doi.org/10.1016/j.ijbiomac.2020.06.110
[5]
Zang, S., Mu, R., Chen, F., Wei, X., Zhu, L., Han, B., et al. (2019) Injectable Chitosan/β-Glycerophosphate Hydrogels with Sustained Release of BMP-7 and Ornidazole in Periodontal Wound Healing of Class III Furcation Defects. MaterialsScienceandEngineering: C, 99, 919-928. https://doi.org/10.1016/j.msec.2019.02.024
[6]
Fu, J. and in het Panhuis, M. (2019) Hydrogel Properties and Applications. JournalofMaterialsChemistryB, 7, 1523-1525. https://doi.org/10.1039/c9tb90023c
[7]
Batool, F., Strub, M., Petit, C., Bugueno, I.M., Bornert, F., Clauss, F., et al. (2018) Periodontal Tissues, Maxillary Jaw Bone, and Tooth Regeneration Approaches: From Animal Models Analyses to Clinical Applications. Nanomaterials, 8, Article 337. https://doi.org/10.3390/nano8050337
[8]
Lee, H., Byun, S., Cho, S. and Yang, B. (2019) Past, Present, and Future of Regeneration Therapy in Oral and Periodontal Tissue: A Review. AppliedSciences, 9, Article 1046. https://doi.org/10.3390/app9061046
[9]
Yan, F.H., & Li, L.L. (2018) Advances in Periodontal Regenerative Therapy. Journal of Oral Medicine Research, 34, 217-222.
[10]
Zhou, T., Zheng, K., Sui, B., Boccaccini, A.R. and Sun, J. (2020) In Vitro Evaluation of Poly (Vinyl Alcohol)/Collagen Blended Hydrogels for Regulating Human Periodontal Ligament Fibroblasts and Gingival Fibroblasts. InternationalJournalofBiologicalMacromolecules, 163, 1938-1946. https://doi.org/10.1016/j.ijbiomac.2020.09.033
Koch, F., Ekat, K., Kilian, D., Hettich, T., Germershaus, O., Lang, H., et al. (2019) A Versatile Biocompatible Antibiotic Delivery System Based on Self-Assembling Peptides with Antimicrobial and Regenerative Potential. AdvancedHealthcareMaterials, 8, Article ID: 1900167. https://doi.org/10.1002/adhm.201900167
[13]
Liu, S., Wang, Y., Yu, L., Li, J. and Ge, S. (2022) Development of a Thermosensitive Hydrogel Loaded with DTT and SDF-1 Facilitating in Situ Periodontal Bone Regeneration. ChemicalEngineeringJournal, 432, Article ID: 134308. https://doi.org/10.1016/j.cej.2021.134308
[14]
Wang, Y., Yao, Z.A. and Wu, H.G. (2022) Research Progress of Chitosan Thermosen-sitive Hydrogels in Bone Tissue Engineering. New Chemical Materials, 50, 13-19.
[15]
Chen, X., Ren, C.X., Liu, L.L., et al. (2020) Study on Injectable Thermosensitive Hydrogel Loaded with Tacrolimus for Promoting Periodontal Tissue Regeneration. Journal of Oral and Maxillofacial Surgery, 30, 272-278.
[16]
Wang, H., Chang, X., Ma, Q., Sun, B., Li, H., Zhou, J., et al. (2023) Bioinspired Drug-Delivery System Emulating the Natural Bone Healing Cascade for Diabetic Periodontal Bone Regeneration. BioactiveMaterials, 21, 324-339. https://doi.org/10.1016/j.bioactmat.2022.08.029
[17]
Liu, Y.P., Kuang, P.P., Chen, Y., et al. (2022) Research Progress of Biomass-Based Stimuli-Responsive Hydrogels. Chemistry and Industry of Forest Products, 42, 126-134.
[18]
Bako, J., Toth, F., Gall, J., Kovacs, R., Csík, A., Varga, I., et al. (2022) Combined Release of Antiseptic and Antibiotic Drugs from Visible Light Polymerized Biodegradable Nanocomposite Hydrogels for Periodontitis Treatment. Pharmaceutics, 14, Article 957. https://doi.org/10.3390/pharmaceutics14050957
[19]
Yu, M., Chang, C., Chao, Y., Jheng, Y., Yang, C., Lee, N., et al. (2016) Ph-Responsive Hydrogel with an Anti‐glycation Agent for Modulating Experimental Periodontitis. JournalofPeriodontology, 87, 742-748. https://doi.org/10.1902/jop.2016.150542
[20]
Lin, J.H., Feng, F., Yu, M.C., Wang, C. and Chang, P. (2017) Modulation of Periodontitis Progression Using ph‐responsive Nanosphere Encapsulating Metronidazole or n-Phenacylthialzolium Bromide. JournalofPeriodontalResearch, 53, 22-28. https://doi.org/10.1111/jre.12481
[21]
Li, Y., Zhang, L., Song, Z., Li, F. and Xie, D. (2022) Intelligent Temperature-Ph Dual Responsive Nanocellulose Hydrogels and the Application of Drug Release towards 5-fluorouracil. InternationalJournalofBiologicalMacromolecules, 223, 11-16. https://doi.org/10.1016/j.ijbiomac.2022.10.188
[22]
Ma, Y., Ji, Y., Zhong, T., Wan, W., Yang, Q., Li, A., et al. (2017) Bioprinting-based PDLSC-ECM Screening for in Vivo Repair of Alveolar Bone Defect Using Cell-Laden, Injectable and Photocrosslinkable Hydrogels. ACSBiomaterialsScience&Engineering, 3, 3534-3545. https://doi.org/10.1021/acsbiomaterials.7b00601
[23]
Goto, R., Nishida, E., Kobayashi, S., Aino, M., Ohno, T., Iwamura, Y., et al. (2021) Gelatin Methacryloyl-Riboflavin (GelMA-RF) Hydrogels for Bone Regeneration. InternationalJournalofMolecularSciences, 22, Article 1635. https://doi.org/10.3390/ijms22041635
Liu, J.Y., Xiao, Y., Wang, X.Y., et al. (2020) Experimental Study of Glucose-Sensitive Hydrogels for Treating Periodontitis in Diabetic Rats. Journal of Oral Medicine Research, 36, 567-571.
[26]
Mahinroosta, M., Jomeh Farsangi, Z., Allahverdi, A. and Shakoori, Z. (2018) Hydrogels as Intelligent Materials: A Brief Review of Synthesis, Properties and Applications. MaterialsTodayChemistry, 8, 42-55. https://doi.org/10.1016/j.mtchem.2018.02.004
[27]
Guo, J., Sun, H., Lei, W., Tang, Y., Hong, S., Yang, H., et al. (2019) Mmp-8-Responsive Polyethylene Glycol Hydrogel for Intraoral Drug Delivery. JournalofDentalResearch, 98, 564-571. https://doi.org/10.1177/0022034519831931
[28]
Liu, S., Wang, Y., Ma, B., Shao, J., Liu, H. and Ge, S. (2021) Gingipain-Responsive Thermosensitive Hydrogel Loaded with SDF-1 Facilitates inSitu Periodontal Tissue Regeneration. ACSAppliedMaterials&Interfaces, 13, 36880-36893. https://doi.org/10.1021/acsami.1c08855
[29]
Koch, F., Wolff, A., Mathes, S., Pieles, U., Saxer, S., Kreikemeyer, B., et al. (2018) Amino Acid Composition of Nanofibrillar Self-Assembling Peptide Hydrogels Affects Responses of Periodontal Tissue Cells in Vitro. InternationalJournalofNanomedicine, 13, 6717-6733. https://doi.org/10.2147/ijn.s173702
[30]
Xu, W., Tan, W., Li, C., Wu, K., Zeng, X. and Xiao, L. (2021) Metformin-Loaded β-TCP/CTS/SBA-15 Composite Scaffolds Promote Alveolar Bone Regeneration in a Rat Model of Periodontitis. JournalofMaterialsScience: MaterialsinMedicine, 32, Article No. 145. https://doi.org/10.1007/s10856-021-06621-8
[31]
dos Santos, D.M., Moon, J., Kim, D., Bassous, N.J., Marangon, C.A., Campana-Filho, S.P., et al. (2024) Hierarchical Chitin Nanocrystal-Based 3D Printed Dual-Layer Membranes Hydrogels: A Dual Drug Delivery Nano-Platform for Periodontal Tissue Regeneration. ACSNano, 18, 24182-24203. https://doi.org/10.1021/acsnano.4c05558
[32]
Hu, C., Zhang, M., Wu, J., Cao, X., Chen, L., Yan, J., et al. (2023) Bisphosphonate-Modified Functional Supramolecular Hydrogel Promotes Periodontal Bone Regeneration by Osteoclast Inhibition. ACSAppliedMaterials&Interfaces, 15, 9066-9079. https://doi.org/10.1021/acsami.2c21297
[33]
Dubey, N., Ferreira, J.A., Daghrery, A., Aytac, Z., Malda, J., Bhaduri, S.B., et al. (2020) Highly Tunable Bioactive Fiber-Reinforced Hydrogel for Guided Bone Regeneration. ActaBiomaterialia, 113, 164-176. https://doi.org/10.1016/j.actbio.2020.06.011
[34]
Liu, X., He, X., Jin, D., Wu, S., Wang, H., Yin, M., et al. (2020) A biodegradable Multifunctional Nanofibrous Membrane for Periodontal Tissue Regeneration. ActaBiomaterialia, 108, 207-222. https://doi.org/10.1016/j.actbio.2020.03.044
[35]
Peng, C., Wang, G., Li, J., Wang, Y., Shu, Z., Tang, M., et al. (2024) Ros-Responsive and Scavenging Bifunctional Hydrogel Enables Co-Delivery of Anti-Inflammatory Agent and Osteogenetic Nanoparticle for Periodontitis Treatment. Materials&Design, 239, Article ID: 112777. https://doi.org/10.1016/j.matdes.2024.112777
[36]
Tang, M., Li, J., Wang, G., Wang, Y., Peng, C., Chang, X., et al. (2024) Cubic Liquid Crystals Containing Propolis Flavonoids as in Situ Thermo-Sensitive Hydrogel Depots for Periodontitis Treatment: Preparation, Pharmacodynamics and Therapeutic Mechanisms. EuropeanJournalofPharmaceuticalSciences, 196, Article ID: 106762. https://doi.org/10.1016/j.ejps.2024.106762
[37]
Pham, D.T., Phewchan, P., Navesit, K., Chokamonsirikun, A., Khemwong, T. and Tiyaboonchai, W. (2021) Development of Metronidazole-Loaded inSitu Thermosensitive Hydrogel for Periodontitis Treatment. TurkishJournalofPharmaceuticalSciences, 18, 510-516. https://doi.org/10.4274/tjps.galenos.2020.09623
[38]
Xu, S., Hu, B., Dong, T., Chen, B., Xiong, X., Du, L., et al. (2023) Alleviate Periodontitis and Its Comorbidity Hypertension Using a Nanoparticle-Embedded Functional Hydrogel System. AdvancedHealthcareMaterials, 12, Article ID: 2203337. https://doi.org/10.1002/adhm.202203337
[39]
Tan, J., Zhang, M., Hai, Z., Wu, C., Lin, J., Kuang, W., et al. (2019) Sustained Release of Two Bioactive Factors from Supramolecular Hydrogel Promotes Periodontal Bone Regeneration. ACSNano, 13, 5616-5622. https://doi.org/10.1021/acsnano.9b00788
[40]
Zhang, W., Wang, X., Wang, S., Zhao, J., Xu, L., Zhu, C., et al. (2011) The Use of Injectable Sonication-Induced Silk Hydrogel for VEGF165 and BMP-2 Delivery for Elevation of the Maxillary Sinus Floor. Biomaterials, 32, 9415-9424. https://doi.org/10.1016/j.biomaterials.2011.08.047