全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evolution of the Incidence of Antibiotic Resistance in Salmonella Strains Isolated at the National Laboratory of Clinical Biology and Public Health, Bangui, Central African Republic from 2019 to 2023

DOI: 10.4236/ojepi.2025.151008, PP. 102-116

Keywords: Incidence-Resistance-Salmonella-Central African Republic

Full-Text   Cite this paper   Add to My Lib

Abstract:

In sub-Saharan Africa, foodborne Salmonella infections cause around 680,000 deaths per year. The evolutionary aspects of the incidence of antibiotic resistance in Salmonella strains no longer seem to attract much interest in the Central African Republic (CAR), although salmonellosis remains a health problem requiring national and international surveillance. Methodology: The study conducted at the National Laboratory of Clinical Biology and Public Health, Bangui, Central African Republic (LNBCSP) was a retrospective descriptive study. The study duration was five years (January 2019 to December 2023). The study sample consisted of patients who underwent bacteriological testing of stool, blood and urine samples for Salmonella at the LNBCSP in Bangui during this period. Study variables were age, sex, year and bacteriological test results. Statistical tests were used to compare incidences. Relative risks (RR) were calculated to measure the degree of association. Results: From 2019 to 2023, we recorded 353 Salmonella strains, of which 5% were found in blood, 37% in urine and 58% in stool. Patient age ranged from 1 to 86 years, with a mean of 27 ± 22.05 years and a mode of 5 years. Children aged 0 to 14 years (34%) and females (55.81%) predominated. The highest rate of contamination by Salmonella strains was 1.69% in 2022. The overall incidence of salmonellosis was 6.72 in 2019, 7.05 in 2020, 6.91 in 2021, 16.9 in 2022 and 6.26 in 2023 per 1000 samples. Resistance was 30.47% to β_lactam antibiotics, 24.22% to fluroquinolones and 37.97% to Salmonella spp. For Salmonella arizonae strains, resistance was 20.25% to aminoglycosides, 43.67% to chloramphenicol and 7.59% to imipenem. Conclusion: Laboratory-based surveillance of antibiotic resistance in Salmonella strains is needed in both human and veterinary medicine. Another study based on molecular characterization will identify new antibiotic-resistant variants circulating in CAR.

References

[1]  Oludairo, O., Kwaga, J., Kabir, J., Abdu, P., Gitanjali, A., Perets, A., et al. (2022) A Review of the International Organization for Standardization (ISO) Guidelines for the Detection of Salmonella from Faeces. Journal of Applied Veterinary Sciences, 7, 14-22.
https://doi.org/10.21608/javs.2022.146858.1158
[2]  Oludairo, O., Kwaga, J., Kabir, J., Abdu, P., Gitanjali, A., Perrets, A., et al. (2022) Review of Salmonella Characteristics, History, Taxonomy, Nomenclature, Non Typhoidal Salmonellosis (NTS) and Typhoidal Salmonellosis (TS). Zagazig Veterinary Journal, 50, 160-171.
https://doi.org/10.21608/zvjz.2022.137946.1179
[3]  Feng, Y., Chang, Y., Pan, S., Su, L., Li, H., Yang, H., et al. (2020) Characterization and Source Investigation of Multidrug-Resistant Salmonella Anatum from a Sustained Outbreak, Taiwan Region. Emerging Infectious Diseases, 26, 2951-2955.
https://doi.org/10.3201/eid2612.200147
[4]  Ajmera, A. and Shabbir, N. (2022) Salmonella. Stat Pearls Publishing.
[5]  Anses (2021) Caractéristiques et sources de Salmonella spp. 1-4.
[6]  Eng, S., Pusparajah, P., Ab Mutalib, N., Ser, H., Chan, K. and Lee, L. (2015) Salmonella: A Review on Pathogenesis, Epidemiology and Antibiotic Resistance. Frontiers in Life Science, 8, 284-293.
https://doi.org/10.1080/21553769.2015.1051243
[7]  Organisation Mondiale de la Santé (OMS) (2023) Rapport annuel de l’EFSA et de l’ECDC sur les zoonoses dans le cadre de l’initiative «One Health» de l’UE.
[8]  Foster, N., Tang, Y., Berchieri, A., Geng, S., Jiao, X. and Barrow, P. (2021) Revisiting Persistent Salmonella Infection and the Carrier State: What Do We Know? Pathogens, 10, Article No. 1299.
https://doi.org/10.3390/pathogens10101299
[9]  Scallan, E., Hoekstra, R.M., Angulo, F.J., Tauxe, R.V., Widdowson, M., Roy, S.L., et al. (2011) Maladie d’origine alimentaire contractée aux États-Unis—Principaux agents pathogènes. Emerging Infectious Diseases, 17, 7-15.
https://doi.org/10.3201/eid1701.09-1101p1
[10]  Abdelkader, A.S., Oumarou, S.S., Maârouhi, I.M., Ali, D.B. and Yacoubou, B. (2017) Prévalence et Diversité de Salmonella en Afrique: Analyse Qualitative et Quantitative. European Scientific Journal, ESJ, 13, 250-270.
[11]  Feasey, N.A., Dougan, G., Kingsley, R.A., Heyderman, R.S. and Gordon, M.A. (2012) Invasive Non-Typhoidal Salmonella Disease: An Emerging and Neglected Tropical Disease in Africa. The Lancet, 379, 2489-2499.
https://doi.org/10.1016/s0140-6736(11)61752-2
[12]  Mattheus, W., Ceyssens, P.-J. and Van Den Bossche, A.N. (2023) Centre national de référence salmonella. Rapport Annuel 2022 Salmonella & Shigella Juillet 2023. Bruxelles; Belgique.
[13]  OMS. Antimicrobial Resistance.
https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
[14]  Angulo, F.J., Nargund, V.N. and Chiller, T.C. (2004) Preuve d’une association entre l’utilisation d’agents antimicrobiens chez les animaux destinés à l’alimentation humaine et la résistance antimicrobienne parmi les bactéries isolées chez l’homme et les conséquences d’une telle résistance sur la santé humaine. Journal of Veterinary Medicine. B, Infectious Diseases and Veterinary Public Health, 51, 374-379.
[15]  Dutil, L., Irwin, R., Finley, R., Ng, L.K., Avery, B., Boerlin, P., et al. (2010) Ceftiofur Resistance in Salmonella enterica Serovar Heidelberg from Chicken Meat and Humans, Canada. Emerging Infectious Diseases, 16, 48-54.
https://doi.org/10.3201/eid1601.090729
[16]  Folster, J.P., Pecic, G., Singh, A., Duval, B., Rickert, R., Ayers, S., et al. (2012) Characterization of Extended-Spectrum Cephalosporin-Resistant Salmonella enterica Serovar Heidelberg Isolated from Food Animals, Retail Meat, and Humans in the United States 2009. Foodborne Pathogens and Disease, 9, 638-645.
https://doi.org/10.1089/fpd.2012.1130
[17]  Pegues, D.A. and Miller, S.I. (2015) Espèces de Salmonelles. In: Bennett, J.E., Dolin, R. and Blaser, M.J., Eds., Principes et pratiques de Mandell, Douglas et Bennett en matière de maladies infectieuses, Elsevier/Saunders, 2559-2568.
[18]  Crump, J.A., Barrett, T.J., Nelson, J.T. and Angulo, F.J. (2003) Reevaluating Fluoroquinolone Breakpoints for Salmonella enterica Serotype Typhi and for Non-Typhi Salmonellae. Clinical Infectious Diseases, 37, 75-81.
https://doi.org/10.1086/375602
[19]  Gupta, A., Fontana, J., Crowe, C., et al. (2003) Groupe de travail PulseNet du Système national de surveillance de la résistance aux antimicrobiens. Émergence d’infections multirésistantes à Salmonella enterica de sérotype Newport résistantes aux céphalosporines à spectre élargi aux États-Unis. The Journal of Infectious Diseases, 188, 1707-1716.
[20]  Gallardo, F., Ruiz, J., Marco, F., Towner, K.J. and Vila, J. (1999) Increase in Incidence of Resistance to Ampicillin, Chloramphenicol and Trimethoprim in Clinical Isolates of Salmonella Serotype Typhimurium with Investigation of Molecular Epidemiology and Mechanisms of Resistance. Journal of Medical Microbiology, 48, 367-374.
https://doi.org/10.1099/00222615-48-4-367
[21]  Centres de contrôle et de prévention des maladies (2015) Système national de surveillance de la résistance aux antimicrobiens pour les bactéries entériques (NARMS): Rapport final sur les isolats humains, 2013. Les centres.
[22]  Medalla, F., Hoekstra, R.M., Whichard, J.M., Barzilay, E.J., Chiller, T.M., Joyce, K., et al. (2013) Augmentation de la résistance à la ceftriaxone et de la non-sensibilité à la ciprofloxacine et diminution de la multirésistance aux médicaments parmi les souches de Salmonella, États-Unis, 1996-2009. Pathogens and Disease, 10, 302-309.
[23]  Le Minor, L. (1992) The Genus Salmonella. In: Balows, A., et al., Eds., A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Application, Springer-Verlag, 2760-2773.
[24]  Threlfall, E.J. (1996) Resistant Gut Bacteria. In: Cook, G.C., Ed., Mansons Tropical Diseases, WB Saunders Company, 864-872.
[25]  Jesudasan, M., John, T.J., Gupta, B.L., Bhujwala, R.A. and Shriniwas (1990) Multiresistant Salmonella Typhi in India. The Lancet, 336, 252.
https://doi.org/10.1016/0140-6736(90)91783-7
[26]  O’Brien, T.F. (1987) Resistance of Bacteria to Antibacterial Agents: Report of Task Force 2. Clinical Infectious Diseases, 9, S244-S260.
https://doi.org/10.1093/clinids/9.supplement_3.s244
[27]  Projet «Surveillance de l’AntibioRésistance en Afrique» ou SARA.
https://www.pasteur.fr
[28]  Widal, F.M. (1896) Serodiagnostic de la fiévre typhoide apropos d’une modification par M M C Nicolle et al. Halipie. Bulletins et Mémoires de la Société Médicale des Hôpitaux de Paris, 13, 561-566.
[29]  EFSA and ECDC (2019) The European Union One Health 2018 Zoonoses Report. EFSA Journal, 17, e05926.
https://doi.org/10.2903/j.efsa.2019.5926
[30]  Fiche de description de danger biologique transmissible par les aliments: Salmonella spp. Saisine n 2016-SA-0080.
https://www.anses.fr
[31]  Lee, Y., Hung, M., Hung, S., Wang, H., Cho, H., Lai, M., et al. (2016) Salmonella enterica Subspecies Arizonae Infection of Adult Patients in Southern Taiwan Region: A Case Series in a Non-Endemic Area and Literature Review. BMC Infectious Diseases, 16, Article No. 746.
https://doi.org/10.1186/s12879-016-2083-0
[32]  Bhan, M., Bahl, R. and Bhatnagar, S. (2005) Typhoid and Paratyphoid Fever. The Lancet, 366, 749-762.
https://doi.org/10.1016/s0140-6736(05)67181-4
[33]  Fournet, N., et al. (2018) Surveillance des toxi-infections alimentaires collectives, Données de la déclaration obligatoire Le point épidémio/Santé publique, France.
[34]  Ouedraogo, A.S., Jean Pierre, H., Bañuls, A.L., Ouédraogo, R. and Godreuil, S. (2017) Emergence and Spread of Antibiotic Resistance in West Africa: Contributing Factors and Threat Assessment. Médecine et Santé Tropicales, 27, 147-154.
https://doi.org/10.1684/mst.2017.0678
[35]  Boï Kone, M. (2021-2022) Profils de résistance aux antibiotiques des souches Escherichia coli et Salmonella spp isolées dans des infections entériques chez les enfants de 0 à 15 ans en milieu communautaire: cas du CSCom de Yirimadjo, Bamako au Mali. Thèse Phar., FaPH.
[36]  Djellab, W., Larfi, A. and Nessaibia, S. (2019) Isolement des entérobactéries productrices des carbapénèmases à partir des eaux usées hospitalières de Tébessa Universite laarbi tebessi tebessa.
[37]  Programme intégré canadien de surveillance de la résistance aux antimicrobiens (PICRA) Des Canadiens et des collectivités en bonne santé dans un monde plus sain—Agence de la santé publique du Canada Jennifer Baker Agence de la sante publique du Canada 160 Research Lane, bureau 103 Guelph, Ontario N1G 5B2 Canada ou faire parvenir un courriel a cipars-picra@phac-aspc.gc.ca.
[38]  Organisation mondiale de la Santé (2022) Principaux faits de la Résistance aux Antibiotiques.
[39]  Koffi, A.R., Ouassa, T., Dadie, A., Karou, T. and Dje Koffi, M. (2012) Sérotypes et profils d’antibio-résistance de Salmonella suspectées d’origine alimentaire et isolées chez des patients diarrhéiques à Abidjan, Côte d’Ivoire. Médecine dAfrique Noire, 59, 336-342.
[40]  Tena, D., González-Praetorius, A. and Bisquert, J. (2007) Urinary Tract Infection Due to Non-Typhoidal Salmonella: Report of 19 Cases. Journal of Infection, 54, 245-249.
https://doi.org/10.1016/j.jinf.2006.05.007
[41]  Sivapalasingam, S., Hoekstra, R.M., McQuiston, J.R., Fields, P.I. and Tauxe, R.V. (2004) Salmonella Bacteriuria: An Increasing Entity in Elderly Women in the United States. Epidemiology and Infection, 132, 897-902.
https://doi.org/10.1017/s0950268804002717

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133