In a fractal zeta universe of bifurcated, ripped spacetime, the Millikan experiment, the quantum Hall effect, atmospheric clouds and universe clouds are shown to be self-similar with mass ratio of about 1020. Chaotic one-dimensional period-doublings as iterated hyperelliptic-elliptic curves are used to explain n-dim Kepler- and Coulomb singularities. The cosmic microwave background and cosmic rays are explained as bifurcated, ripped spacetime tensile forces. First iterated binary tree cloud cycles are related to emissions 1…1000 GHz. An interaction-independent universal vacuum density allows to predict large area correlated cosmic rays in quantum Hall experiments which would generate local nuclear disintegration stars, enhanced damage of layers and enhanced air ionization. A self-similarity between conductivity plateau and atmospheric clouds is extended to correlations in atmospheric layer, global temperature and climate.
References
[1]
Friedmann, A. (1922) On the Curvature of Space. Zeitschrift für Physik, 10, 377.
[2]
Ziep, O. (2024) Fractal Zeta Universe and Cosmic-Ray-Charge-Cloud Superfluid. https://doi.org/10.5281/zenodo.14193126
[3]
Remmen, G.N. (2021) Amplitudes and the Riemann Zeta Function. Physical Review Letters, 127, Article ID: 241602. https://doi.org/10.1103/physrevlett.127.241602
[4]
Manasson, V.A. (2017) An Emergence of a Quantum World in a Self-Organized Vacuum—A Possible Scenario. Journal of Modern Physics, 8, 1330-1381. https://doi.org/10.4236/jmp.2017.88086
[5]
Hieb, M. (1995) Feigenbaum’s Constant and the Sommerfeld Fine-Structure Constant. Feigenbaum’s Constant and the Sommerfeld Fine-Structure Constant. https://www.rxiv.org/abs/1704.0365
[6]
Abrikosov, A.A. (1957) On the Magnetic Properties of Superconductors of the Second Group. Soviet Physics-JETP, 5, 1174-1182.
[7]
Bonch-Bruevich, V.L. (1974) The Benard Problem for Hot Electrons in Semiconductors. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 67, 2204-2214.
[8]
Dirac, P.A. (1974) Cosmological Models and the Large Numbers Hypothesis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 338, 439-446.
[9]
Millikan, R.A. (1913) On the Elementary Electrical Charge and the Avogadro Constant. Physical Review, 2, 109-143. https://doi.org/10.1103/physrev.2.109
[10]
França, G. and LeClair, A. (2014) A Theory for the Zeros of Riemann Zeta and Other L-Functions. arXiv: 1407.4358. https://doi.org/10.48550/arXiv.1407.4358
[11]
Ziep, O. (2025) QH Plateau and CMB-CR Near Nontrivial Zeros of the Zeta Function. DPG-Frühjahrstagung der Sektion Kondensierte Materie, Regensburg 2025, Wednesday 16-21 March 2025. https://www.dpg-verhandlungen.de/year/2025/conference/regensburg/part/dy/session/27/contribution/10?lang=en
[12]
Conover, E. (2023) Where Cosmic Rays Are Born. Science News for Students. https://www.snexplores.org/article/where-cosmic-rays-are-born
[13]
Einstein, A. (1918) Über Gravitationswellen. Sitzungsber. Preuss. Akad. Wiss. Berlin, 154.
[14]
Reinhardt, H. (2008) Dielectric Function of the QCD Vacuum. Physical Review Letters, 101, Article ID: 061602. https://doi.org/10.1103/physrevlett.101.061602
[15]
Baker, H.F. (1907) An Introduction to the Theory of Multiply Periodic Functions. Ulan Press.
[16]
Schertz, R. (2006) On the Generalized Principal Ideal Theorem of Complex Multiplication. Journal de Théorie des Nombres de Bordeaux, 18, 683-691. https://doi.org/10.5802/jtnb.566
[17]
Weber, H. (1908) Lehrbuch der Algebra, Band III. Elliptische Funktionen und Algebraische Zahlen. F. Vieweg und Sohn.
[18]
Weber, H. (1961) Lehrbuch der Algebra: Vol. 2. Wentworth Press.
[19]
Coppersmith, S.N. (1999) A Simpler Derivation of Feigenbaum’s Renormalization Group Equation for the Period-Doubling Bifurcation Sequence. American Journal of Physics, 67, 52-54. https://doi.org/10.1119/1.19190
[20]
Epstein, H. (1986) New Proofs of the Existence of the Feigenbaum Functions. Communications in Mathematical Physics, 106, 395-426. https://doi.org/10.1007/bf01207254
[21]
Blinder, S.M. and Pollock, E.L. (1989) Generalized Relations among n-Dimensional Coulomb Green’s Functions Using Fractional Derivatives. Journal of Mathematical Physics, 30, 2285-2287. https://doi.org/10.1063/1.528556
[22]
Hostler, L. (1971) Excited State Reduced Coulomb Green’s Function and f-Dimensional Coulomb Green’s Function in Momentum Space. Journal of Mathematical Physics, 12, 2311-2319. https://doi.org/10.1063/1.1665537
[23]
Meixner, J. (1933) Die Greensche Funktion des wellenmechanischen Keplerproblems. Mathematische Zeitschrift, 36, 677-707. https://doi.org/10.1007/bf01188644
[24]
Bisognin, R., Bartolomei, H., Kumar, M., Safi, I., Berroir, J., Bocquillon, E., et al. (2019) Microwave Photons Emitted by Fractionally Charged Quasiparticles. Nature Communications, 10, Article No. 1708. https://doi.org/10.1038/s41467-019-09758-x
[25]
Zhang, W., Wang, P., Skinner, B., Bi, R., Kozii, V., Cho, C., et al. (2020) Observation of a Thermoelectric Hall Plateau in the Extreme Quantum Limit. Nature Communications, 11, Article No. 1046. https://doi.org/10.1038/s41467-020-14819-7
[26]
Yang, K. and Halperin, B.I. (2009) Thermopower as a Possible Probe of Non-Abelian Quasiparticle Statistics in Fractional Quantum Hall Liquids. Physical Review B, 79, Article ID: 115317. https://doi.org/10.1103/physrevb.79.115317
[27]
Keiper, R. and Ziep, O. (1986) Theory of Quantum Hall Effect. Physica Status Solidi (b), 133, 769-773. https://doi.org/10.1002/pssb.2221330239
[28]
Ney, E.P. (1959) Cosmic Radiation and the Weather. Nature, 183, 451-452. https://doi.org/10.1038/183451a0
[29]
Dickinson, R.E. (1975) Solar Variability and the Lower Atmosphere. Bulletin of the American Meteorological Society, 56, 1240-1248. https://doi.org/10.1175/1520-0477(1975)056<1240:svatla>2.0.co;2
[30]
Svensmark, H. (1998) Influence of Cosmic Rays on Earth’s Climate. Physical Review Letters, 81, 5027-5030. https://doi.org/10.1103/physrevlett.81.5027
[31]
Svensmark, H., Bondo, T. and Svensmark, J. (2009) Cosmic Ray Decreases Affect Atmospheric Aerosols and Clouds. Geophysical Research Letters, 36, L15101. https://doi.org/10.1029/2009gl038429
Shaviv, N.J. and Veizer, J. (2003) Celestial Driver of Phanerozoic Climate? GSA Today, 13, 4-10. https://doi.org/10.1130/1052-5173(2003)013<0004:cdopc>2.0.co;2
[34]
Tölke, F. (2013) Jacobische Elliptische Funktionen, Legendresche Elliptische Normalintegrale und spezielle Weierstraßsche Zeta-und Sigma-Funktionen (Bd. 3). Springer.
[35]
Ziep, O. (2025) Quantized Conductivity as a Neutral Quadrupolar Generator. Scholars Journal of Physics, Mathematics and Statistics, 12, 1-5. https://doi.org/10.36347/sjpms.2025.v12i01.001