全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

考虑溢价补贴的发电商参与碳–电市场决策的研究
Research on the Decision-Making of Electricity Producers Participating in the Carbon-Electricity Market Considering Premium Subsidy

DOI: 10.12677/jlce.2025.141005, PP. 28-43

Keywords: “双碳”目标,碳–电市场,溢价补贴,发电商决策
“Double Carbon” Goals
, Carbon-Electricity Market, Premium Subsidy, Decision-Making of Electricity Producers

Full-Text   Cite this paper   Add to My Lib

Abstract:

在达成“双碳”目标和普及可再生能源使用的影响下,我国电力市场与碳交易市场分别面临着结构转型与增长不足的重大挑战,可再生能源发电比例增长与其消纳之间的不平衡导致碳交易市场和电力市场需要对市场机制进行优化。在这个过程中,政府为了减少发电碳排放并提高发电效率,会对发电商提供补贴,在新的补贴模式下不同类型发电商的决策难度增加。为了确定对发电商提供的补贴的有效性,并为发电商的决策提供帮助,文章提出了一种使用溢价来计算社会福利损失的方式,对不同类型发电商参与电力市场和碳交易市场的决策进行了分析。首先,文章根据发电商参与碳–电市场供给的不同阶段,构建了溢价补贴模型,并划分三个场景用于验证溢价补贴模型的有效性以及观察发电商在不同社会用电场景下的决策;然后,根据发电商参与碳–电市场交易的流程,构建基于溢价补贴的决策模型,以优化决策模型的方式体现溢价补贴模型对电力系统和发电商决策的影响。算例结果对发电量、碳排放、溢价补贴总量和发电商收益从总体和个体的角度进行了分析,说明了使用溢价补贴模型的有效性,同时发现了碳排放系数低的发电商在进行发电决策时具有优势,政府补贴不对发电类型进行区分会造成更多的无效补贴等。
Under the influence of achieving the “dual carbon” goals and the popularization of renewable energy usage, China’s electricity market and carbon trading market respectively confront significant challenges, such as structural transformation and insufficient growth. The imbalance between the increase in the proportion of renewable energy generation and its consumption has led to the need for optimization of the market mechanisms in both the carbon trading market and the electricity market. In this process, in order to reduce carbon emissions from power generation and enhance generation efficiency, the government will provide subsidies to power generators. In the new subsidy mode, the decision-making difficulty for different types of power generators has increased. To determine the effectiveness of the subsidies provided to power generators and offer assistance for their decision-making, this article proposes a method of calculating social welfare losses using premiums and analyzes the decisions of different types of power generators participating in the electricity market and the carbon trading market. Firstly, based on the different stages of power generators’ participation in the carbon-electricity market supply, this article constructs a premium subsidy model and divides it into three scenarios to verify the validity of the premium subsidy model and observe the decisions of power generators in different social electricity consumption scenarios. Then, in accordance with the process of power generators’ participation in the carbon-electricity market transactions, a decision-making model based on premium subsidies is constructed to reflect the impact of the premium subsidy model on the electricity system and the decision-making of power generators. The calculation example results conduct an analysis of power generation volume, carbon emissions, the total amount of premium subsidies,

References

[1]  张森林. 基于“双碳”目标的电力市场与碳市场协同发展研究[J]. 中国电力企业管理, 2021(10): 50-54.
[2]  国家发展改革委, 国家能源局. 关于加快建设全国统一电力市场体系的指导意见[J]. 大众用电, 2022, 37(2): 8-10.
[3]  我国非化石能源发电装机容量占比超50% [J]. 电力勘测设计, 2023(6): 60.
[4]  今年非化石能源发电装机占比将过半[J]. 中国环境监察, 2023(4): 4.
[5]  陈皓勇. 碳中和目标下的电力系统和电力市场转型[J]. 中国电力企业管理, 2020(28): 19-23.
[6]  朱继忠, 冯禹清, 谢平平, 等. 考虑可再生能源配额制的中国电力市场均衡模型[J]. 电力系统自动化, 2019, 43(1): 168-15.
[7]  Lin, J., Kahrl, F., Yuan, J., Chen, Q. and Liu, X. (2019) Economic and Carbon Emission Impacts of Electricity Market Transition in China: A Case Study of Guangdong Province. Applied Energy, 238, 1093-1107.
https://doi.org/10.1016/j.apenergy.2019.01.128
[8]  刘自敏, 朱朋虎, 杨丹, 等. 交叉补贴、工业电力降费与碳价格机制设计[J]. 经济学(季刊), 2020, 19(2): 709-730.
[9]  刘秋华, 袁浩, 杨争林, 等. 可再生能源配额制下绿色证书补偿辅助服务方案探讨[J]. 电力系统自动化, 2020, 44(6): 1-8.
[10]  张翔, 陈政, 马子明, 等. 适应可再生能源配额制的电力市场交易体系研究[J]. 电网技术, 2019, 43(8): 2682-2690.
[11]  蒋金荷. 碳定价机制最新进展及对中国碳市场发展建议[J]. 价格理论与实践, 2022(2): 26-30, 90.
[12]  邓盛盛, 陈皓勇, 肖东亮, 等. 考虑碳市场交易的寡头电力市场均衡分析[J]. 南方电网技术, 2024, 18(1): 143-152.
http://kns.cnki.net/kcms/detail/44.1643.TK.20230201.0954.003.html, 2023-11-02.
[13]  范玉宏, 丁珩, 张维, 等. 电力现货市场建设关键问题研究[J]. 湖北电力, 2018, 42(2): 45-50.
[14]  Zhu, W., Wang, C., Wang, L., Wu, X. and Yue, Q. (2022) Analysis of Energy-Saving and Environmental Benefits from Power Structure Adjustment in China: A Comparative Study from 2020 to 2060. Sustainable Production and Consumption, 31, 750-761.
https://doi.org/10.1016/j.spc.2022.03.030
[15]  Afshar, K., Ghiasvand, F.S. and Bigdeli, N. (2018) Optimal Bidding Strategy of Wind Power Producers in Pay-as-Bid Power Markets. Renewable Energy, 127, 575-586.
https://doi.org/10.1016/j.renene.2018.05.015
[16]  Wang, T., Gong, Y. and Jiang, C. (2014) A Review on Promoting Share of Renewable Energy by Green-Trading Mechanisms in Power System. Renewable and Sustainable Energy Reviews, 40, 923-929.
https://doi.org/10.1016/j.rser.2014.08.011
[17]  刘阳, 刘继春, 杨语嫣. 考虑欧盟碳边境调节机制的碳-电融合市场各主体决策行为研究[J]. 电网技术, 2023, 47(8): 3111-3122.
[18]  李祥光, 谭青博, 李帆琪, 等. 电碳耦合对煤电机组现货市场结算电价影响分析模型[J]. 中国电力, 2024, 57(5): 113-125.
http://kns.cnki.net/kcms/detail/11.3265.TM.20230907.1429.004.html, 2023-10-30.
[19]  孙晓聪, 丁一, 包铭磊, 等. 考虑发电商多时间耦合决策的碳-电市场均衡分析[J]. 电力系统自动化, 2023, 47(21): 1-11.
http://kns.cnki.net/kcms/detail/32.1180.TP.20221020.1618.005.html, 2023-10-30.
[20]  董福贵, 郗来昊, 孟子航. 考虑碳交易的电力现货市场出清多阶段优化模型研究[J]. 电网技术, 2024, 48(1): 79-90.
https://doi.org/10.13335/j.1000-3673.pst.2023.0570, 2023-10-30.
[21]  尚楠, 冷媛, 陈政, 等. 考虑现货电能量交易的发用电主体碳排放权交易决策模型[J]. 电力系统自动化, 2023, 47(21): 36-46.
http://kns.cnki.net/kcms/detail/32.1180.TP.20230824.1042.002.html, 2023-11-02.
[22]  Chi, Y., Zhao, H., Hu, Y., Yuan, Y. and Pang, Y. (2022) The Impact of Allocation Methods on Carbon Emission Trading under Electricity Marketization Reform in China: A System Dynamics Analysis. Energy, 259, Article 125034.
https://doi.org/10.1016/j.energy.2022.125034
[23]  叶晨, 牟玉亭, 王蓓蓓, 等. 考虑动态碳交易曲线的电-碳市场出清模型及节点边际电价构成机理分析[J]. 电网技术, 2023, 47(2): 613-624.
[24]  陈延安, 龚大勇. 2024年煤炭价格走势预测及区域特点[J]. 煤炭经济研究, 2024, 44(3): 55-59.
[25]  崔杨, 徐扬, 刘新元, 等. 碳交易耦合下现货电能量市场日前出清方法[J]. 中国电机工程学报, 2025, 45(1): 66-80.
http://kns.cnki.net/kcms/detail/11.2107.tm.20231115.1731.011.html, 2024-09-08.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133