全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于粒子群优化与BP神经网络的电动物流车充电需求预测
Prediction of Charging Demand for Electric Logistics Vehicles Based on Particle Swarm Optimization and BP Neural Network

DOI: 10.12677/aepe.2025.131002, PP. 9-20

Keywords: 电动物流车,充电需求预测,粒子群优化,BP神经网络
Electric Logistics Vehicle
, Charging Demand Forecast, Particle Swarm Optimization, BP Neural Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

为优化电动物流车充电需求预测方法,本文结合粒子群优化算法(PSO)和BP神经网络技术,对电动物流车的充电需求进行了系统性定量研究。首先,通过多元回归分析和主成分分析,从复杂多变的影响因素中提取关键变量,如车辆运行路径、电池容量、行驶距离和充电时间分布等。然后,基于提取的主要影响因素,构建了PSO-BP神经网络预测模型。根据预测的主要考虑因素,建立了PSO-BP神经网络预测模式。粒子群优化理论主要用来优化BP神经网络的初始权值和阈值,从而提高模型的预测准确度和减少了局部最优预测问题。通过实验验证,本研究模型在预测电动物流车充电需求方面表现出显著的精确性和可靠性。
To optimize the prediction method of charging demand for electric logistics vehicles, this paper combines particle swarm optimization algorithm (PSO) and BP neural network technology to conduct a systematic quantitative study on the charging demand of electric logistics vehicles. Firstly, through multiple regression analysis and principal component analysis, key variables such as vehicle operating path, battery capacity, driving distance, and charging time distribution are extracted from complex and variable influencing factors. Then, based on the extracted main influencing factors, a PSO-BP neural network prediction model was constructed. Based on the main considerations of prediction, a PSO-BP neural network prediction mode was established. Particle swarm optimization theory is mainly used to optimize the initial weights and thresholds of BP neural networks, thereby improving the prediction accuracy of the model and reducing local optimal prediction problems. Through experimental verification, this research model demonstrates significant accuracy and reliability in predicting the charging demand of electric logistics vehicles.

References

[1]  曹小曙, 胡培婷, 刘丹. 电动汽车充电站选址研究进展[J]. 地理科学进展, 2019, 38(1): 139-152.
[2]  田梦瑶, 汤波, 杨秀, 等. 综合考虑充电需求和配电网接纳能力的电动汽车充电站规划[J]. 电网技术, 2021, 45(2): 498-509.
[3]  Shepero, M. and Munkhammar, J. (2018) Spatial Markov Chain Model for Electric Vehicle Charging in Cities Using Geographical Information System (GIS) Data. Applied Energy, 231, 1089-1099.
https://doi.org/10.1016/j.apenergy.2018.09.175
[4]  罗晴川. 基于改进麻雀搜索算法的电动汽车充电站选址定容在规划区的应用[D]: [硕士学位论文]. 大庆: 东北石油大学, 2022.
[5]  Afshar, M., Mohammadi, M.R. and Abedini, M. (2021) A Novel Spatial-Temporal Model for Charging Plug Hybrid Electrical Vehicles Based on Traffic-Flow Analysis and Monte Carlo Method. ISA Transactions, 114, 263-276.
https://doi.org/10.1016/j.isatra.2020.12.051
[6]  Luo, H., Ruan, J. and Li, F. (2011) Study on the Electric Vehicles Ownership and Planning for the Construction of Charging Infrastructure. 2011 Asia-Pacific Power and Energy Engineering Conference, Wuhan, 25-28 March 2011, 1-4.
https://doi.org/10.1109/appeec.2011.5748974
[7]  李菱, 李燕青, 姚玉海, 等. 基于遗传算法的电动汽车充电站的布局规划[J]. 华东电力, 2011, 39(6): 1004-1006.
[8]  李鑫. 黑龙江地区电动汽车充换电站需求预测及规划研究[D]: [硕士学位论文]. 北京: 华北电力大学, 2014.
[9]  Barbecho Bautista, P., Lemus Cárdenas, L., Urquiza Aguiar, L. and Aguilar Igartua, M. (2019) A Traffic-Aware Electric Vehicle Charging Management System for Smart Cities. Vehicular Communications, 20, Article ID: 100188.
https://doi.org/10.1016/j.vehcom.2019.100188
[10]  龙虹毓, 周游, 陈芳幸, 等. 基于山地城市电动汽车负荷特性的充电设施规划[J]. 现代电力, 2024, 41(2): 371-379.
[11]  刘建华. 粒子群算法的基本理论及其改进研究[D]: [博士学位论文]. 长沙: 中南大学, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133