|
基于因果图注意力机制的乳腺癌图像分类
|
Abstract:
乳腺癌是全球女性最常见的恶性肿瘤,对其发病机制和特性的深入研究对预防、早期筛查和治疗至关重要。本研究旨在通过提出一种新的因果发现注意力图神经网络(CA-GAT)模型,来提高乳腺癌图像分类的准确性和效率。首先,分析了现有图神经网络(GNN)在乳腺癌图像分类中的问题,特别是快捷特征与因果特征的混杂关系。为了解决这一问题,我们提出了CA-GAT模型,该模型通过三个主要部分:软掩模估计、混杂解开和因果干预,来强化因果特征与预测之间的因果关系。在BreaKHis数据集上进行实验,评估了CA-GAT模型的性能。实验结果表明,CA-GAT模型在乳腺癌图像分类任务中取得了93.8%的分类精度,显著优于其他传统GNN模型和深度学习模型。此外,通过Micro F1分数和Macro F1分数的比较,进一步证明了CA-GAT模型在分类准确性和类别间平衡性能上的优势。本研究提出的CA-GAT模型有效地提高了乳腺癌图像分类的准确性,为乳腺癌的诊断和治疗提供了一种新的工具。未来的工作将集中在进一步优化模型结构和探索更多实际应用场景。
Breast cancer is the most common malignant tumor among women worldwide, and in-depth research on its pathogenesis and characteristics is crucial for prevention, early screening, and treatment. This study aims to improve the accuracy and efficiency of breast cancer image classification by proposing a novel Causal Discovery Attention Graph Neural Network (CA-GAT) model. The research begins with an analysis of the issues faced by existing Graph Neural Networks (GNNs) in breast cancer image classification, particularly the confounding relationship between shortcut features and causal features. To address this issue, the CA-GAT model is introduced, which reinforces the causal relationship between causal features and predictions through three main components: soft mask estimation, disentanglement of confounders, and causal intervention. Experiments were conducted on the BreaKHis dataset to evaluate the performance of the CA-GAT model. The results demonstrate that the CA-GAT model achieved a classification accuracy of 93.8% in breast cancer image classification tasks, significantly outperforming other traditional GNN models and deep learning models. Furthermore, comparisons of Micro F1 scores and Macro F1 scores further confirm the CA-GAT model’s advantages in classification accuracy and balanced performance across categories. The CA-GAT model proposed in this study effectively enhances the accuracy of breast cancer image classification, providing a new tool for the diagnosis and treatment of breast cancer. Future work will focus on further optimizing the model structure and exploring more practical application scenarios.
[1] | Khan, S., Islam, N., Jan, Z., Ud Din, I. and Rodrigues, J.J.P.C. (2019) A Novel Deep Learning Based Framework for the Detection and Classification of Breast Cancer Using Transfer Learning. Pattern Recognition Letters, 125, 1-6. https://doi.org/10.1016/j.patrec.2019.03.022 |
[2] | Yedjou, C.G., Sims, J.N., Miele, L., Noubissi, F., Lowe, L., Fonseca, D.D., et al. (2019) Health and Racial Disparity in Breast Cancer. In: Ahmad, A., Ed., Breast Cancer Metastasis and Drug Resistance: Challenges and Progress, Springer International Publishing, 31-49. https://doi.org/10.1007/978-3-030-20301-6_3 |
[3] | Xie, J., Liu, R., Luttrell, J. and Zhang, C. (2019) Deep Learning Based Analysis of Histopathological Images of Breast Cancer. Frontiers in Genetics, 10, Article No. 80. https://doi.org/10.3389/fgene.2019.00080 |
[4] | 陈思硕, 王晓东, 刘西洋. 基于图神经网络的乳腺癌病理图像分析方法综述[J]. 计算机科学, 2024(6): 172-185. |
[5] | 禤浚波, 周立广, 梁英豪, 等. 基于Swin Transformer和Vol积注意力的乳腺癌病理图像诊断研究[J]. 现代电子技术, 2024(13): 36-42. |
[6] | Liao, H., Long, Y., Han, R., Wang, W., Xu, L., Liao, M., et al. (2020) Deep Learning‐Based Classification and Mutation Prediction from Histopathological Images of Hepatocellular Carcinoma. Clinical and Translational Medicine, 10, e102. https://doi.org/10.1002/ctm2.102 |
[7] | 马浩然, 王金华. 基于图结构与元素信息融合的实体对齐技术[J]. 科技导报, 2024(18): 98-109. |
[8] | 杨瑞, 马菲雅, 王芳, 等. 基于超像素分割算子的高分辨率多光谱图像重构方法[J]. 陕西师范大学学报(自然科学版), 2024(6): 57-66. |
[9] | Watkins, E.J. (2019) Overview of Breast Cancer. JAAPA, 32, 13-17. https://doi.org/10.1097/01.jaa.0000580524.95733.3d |
[10] | Giunipero, L.C., Hooker, R.E., Joseph‐Matthews, S., Yoon, T.E. and Brudvig, S. (2008) A Decade of SCM Literature: Past, Present and Future Implications. Journal of Supply Chain Management, 44, 66-86. https://doi.org/10.1111/j.1745-493x.2008.00073.x |
[11] | Zhang, S. and Xie, L. (2020) Improving Attention Mechanism in Graph Neural Networks via Cardinality Preservation. Proceedings of the 29th International Joint Conference on Artificial Intelligence, Yokohama, 11-17 July 2020, 1395-1402. https://doi.org/10.24963/ijcai.2020/194 |
[12] | Scherrer, N., Bilaniuk, O., Annadani, Y., et al. (2022) Learning Neural Causal Models with Active Interventions. http://arxiv.org/abs/2109.02429 |
[13] | Sui, Y., Wang, X., Wu, J., Lin, M., He, X. and Chua, T. (2022). Causal Attention for Interpretable and Generalizable Graph Classification. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington DC, 14-18 August 2022, 1696-1705. https://doi.org/10.1145/3534678.3539366 |
[14] | Araújo, T., Aresta, G., Castro, E., Rouco, J., Aguiar, P., Eloy, C., et al. (2017) Classification of Breast Cancer Histology Images Using Convolutional Neural Networks. PLOS ONE, 12, e0177544. https://doi.org/10.1371/journal.pone.0177544 |
[15] | Bass, C., Silva, M.d., Sudre, C., Williams, L.Z.J., Sousa, H.S., Tudosiu, P., et al. (2023) ICAM-Reg: Interpretable Classification and Regression with Feature Attribution for Mapping Neurological Phenotypes in Individual Scans. IEEE Transactions on Medical Imaging, 42, 959-970. https://doi.org/10.1109/tmi.2022.3221890 |
[16] | Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P. and Süsstrunk, S. (2012) SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34, 2274-2282. https://doi.org/10.1109/tpami.2012.120 |
[17] | Jiang, B., Chen, Y., Wang, B., Xu, H. and Luo, B. (2023) DropAGG: Robust Graph Neural Networks via Drop Aggregation. Neural Networks, 163, 65-74. https://doi.org/10.1016/j.neunet.2023.03.022 |
[18] | Pei, H., Wei, B., Chang, K.C.C., et al. (2020) Geom-GCN: Geometric Graph Convolutional Networks. 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, 26-30 April 2020. http://arxiv.org/abs/2002.05287 |
[19] | Gin, S., Abdelouas, A., Criscenti, L.J., Ebert, W.L., Ferrand, K., Geisler, T., et al. (2013) An International Initiative on Long-Term Behavior of High-Level Nuclear Waste Glass. Materials Today, 16, 243-248. https://doi.org/10.1016/j.mattod.2013.06.008 |
[20] | Golatkar, A., Anand, D. and Sethi, A. (2018) Classification of Breast Cancer Histology Using Deep Learning. http://arxiv.org/abs/1802.08080 |