全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Bose-Einstein Condensation Yb2Si2O7 Retaining Si Applied in UV-Etching 1 nm Quantum Wires

DOI: 10.4236/ojpc.2025.151001, PP. 1-19

Keywords: Rb-87, BEC Phase, Yb-70, BEC Silicon, Absolute Zero Temperature

Full-Text   Cite this paper   Add to My Lib

Abstract:

A Bose-Einstein condensate (BEC) is a topic of significant interest within the scientific community. It is well understood that Rb-87 and Yb2Si2O7 have been utilized in experiments to explore this phenomenon. These studies have demonstrated that these materials can achieve the BEC phase, a state that has been experimentally validated. In this paper, we further establish, from the perspective of theoretical physics, that silicon is also capable of exhibiting BEC properties. Our approach differs from prior studies in that it uses innovatively certain boundary conditions. Specifically, we employed Yb-70 as a gamma-ray radiation source and a 1 nm linewidth (as the half-width of a 2 nm line). Additionally, we utilized the concept of half-value thickness from nuclear physics absorption models to optimize the semiconductor process. This method effectively removes ytterbium (Yb) during the process, leaving only silicon, silicon-based materials, or silicon topological superconductors on the wafer. This technical procedure results in the creation of “BEC silicon” at absolute zero temperature (0 K), introducing a novel material for BEC realization.

References

[1]  Klaers, J., Schmitt, J., Vewinger, F. and Weitz, M. (2010) Bose-Einstein Condensation of Photons in an Optical Microcavity. Nature, 468, 545-548.
https://doi.org/10.1038/nature09567
[2]  Hester, G., Nair, H.S., Reeder, T., Yahne, D.R., DeLazzer, T.N., Berges, L., et al. (2019) Novel Strongly Spin-Orbit Coupled Quantum Dimer Magnet: Yb2Si2O7. Physical Review Letters, 123, Article ID: 027201.
https://doi.org/10.1103/physrevlett.123.027201
[3]  Fleischhauer, M., Imamoglu, A. and Marangos, J.P. (2005) Electromagnetically Induced Transparency: Optics in Coherent Media. Reviews of Modern Physics, 77, 633-673.
https://doi.org/10.1103/revmodphys.77.633
[4]  Hau, L.V., Harris, S.E., Dutton, Z. and Behroozi, C.H. (1999) Light Speed Reduction to 17 Metres per Second in an Ultracold Atomic Gas. Nature, 397, 594-598.
https://doi.org/10.1038/17561
[5]  Kash, M.M., Sautenkov, V.A., Zibrov, A.S., Hollberg, L., Welch, G.R., Lukin, M.D., et al. (1999) Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas. Physical Review Letters, 82, 5229-5232.
https://doi.org/10.1103/physrevlett.82.5229
[6]  Harris, S.E. and Hau, L.V. (1999) Nonlinear Optics at Low Light Levels. Physical Review Letters, 82, 4611-4614.
https://doi.org/10.1103/physrevlett.82.4611
[7]  Kang, H., Hernandez, G. and Zhu, Y. (2004) Slow-Light Six-Wave Mixing at Low Light Intensities. Physical Review Letters, 93, Article ID: 073601.
https://doi.org/10.1103/physrevlett.93.073601
[8]  Braje, D.A., Balić, V., Goda, S., Yin, G.Y. and Harris, S.E. (2004) Frequency Mixing Using Electromagnetically Induced Transparency in Cold Atoms. Physical Review Letters, 93, Article ID: 183601.
https://doi.org/10.1103/physrevlett.93.183601
[9]  Harris, S.E. and Yamamoto, Y. (1998) Photon Switching by Quantum Interference. Physical Review Letters, 81, 3611-3614.
https://doi.org/10.1103/physrevlett.81.3611
[10]  Yan, M., Rickey, E.G. and Zhu, Y. (2001) Observation of Absorptive Photon Switching by Quantum Interference. Physical Review A, 64, Article ID: 041801.
https://doi.org/10.1103/physreva.64.041801
[11]  Braje, D.A., Balić, V., Yin, G.Y. and Harris, S.E. (2003) Low-Light-Level Nonlinear Optics with Slow Light. Physical Review A, 68, Article ID: 041801.
https://doi.org/10.1103/physreva.68.041801
[12]  Chen, Y., Tsai, Z., Liu, Y. and Yu, I.A. (2005) Low-Light-Level Photon Switching by Quantum Interference. Optics Letters, 30, 3207-3209.
https://doi.org/10.1364/ol.30.003207
[13]  Wang, C., Chen, Y., Lin, S., Lin, W., Kuan, P. and Yu, I.A. (2006) Low-Light-Level All-Optical Switching. Optics Letters, 31, 2350-2352.
https://doi.org/10.1364/ol.31.002350
[14]  Lin, W.H., Liao, W.T., Wang, C.Y., Lee, Y.F. and Yu, I.A. (2008) Low-Light-Level All-Optical Switching Based on Stored Light Pulses. Physical Review A, 78, Article ID: 033807.
[15]  Schmidt, H. and Imamoglu, A. (1996) Giant Kerr Nonlinearities Obtained by Electromagnetically Induced Transparency. Optics Letters, 21, 1936-1938.
https://doi.org/10.1364/ol.21.001936
[16]  Lukin, M.D. and Imamoğlu, A. (2000) Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons. Physical Review Letters, 84, 1419-1422.
https://doi.org/10.1103/physrevlett.84.1419
[17]  Kang, H. and Zhu, Y. (2003) Observation of Large Kerr Nonlinearity at Low Light Intensities. Physical Review Letters, 91, Article ID: 093601.
https://doi.org/10.1103/physrevlett.91.093601
[18]  Chen, Y., Wang, C., Wang, S. and Yu, I.A. (2006) Low-Light-Level Cross-Phase-Modulation Based on Stored Light Pulses. Physical Review Letters, 96, Article ID: 043603.
https://doi.org/10.1103/physrevlett.96.043603
[19]  Fleischhauer, M. and Lukin, M.D. (2000) Dark-State Polaritons in Electromagnetically Induced Transparency. Physical Review Letters, 84, 5094-5097.
https://doi.org/10.1103/physrevlett.84.5094
[20]  Liu, C., Dutton, Z., Behroozi, C.H. and Hau, L.V. (2001) Observation of Coherent Optical Information Storage in an Atomic Medium Using Halted Light Pulses. Nature, 409, 490-493.
https://doi.org/10.1038/35054017
[21]  Phillips, D.F., Fleischhauer, A., Mair, A., Walsworth, R.L. and Lukin, M.D. (2001) Storage of Light in Atomic Vapor. Physical Review Letters, 86, 783-786.
https://doi.org/10.1103/physrevlett.86.783
[22]  Longdell, J.J., Fraval, E., Sellars, M.J. and Manson, N.B. (2005) Stopped Light with Storage Times Greater than One Second Using Electromagnetically Induced Transparency in a Solid. Physical Review Letters, 95, Article ID: 063601.
https://doi.org/10.1103/physrevlett.95.063601
[23]  Chen, Y., Liu, Y., Tsai, Z., Wang, S. and Yu, I.A. (2005) Beat-note Interferometer for Direct Phase Measurement of Photonic Information. Physical Review A, 72, Article ID: 033812.
https://doi.org/10.1103/physreva.72.033812
[24]  Chanelière, T., Matsukevich, D.N., Jenkins, S.D., Lan, S., Kennedy, T.A.B. and Kuzmich, A. (2005) Storage and Retrieval of Single Photons Transmitted between Remote Quantum Memories. Nature, 438, 833-836.
https://doi.org/10.1038/nature04315
[25]  Eisaman, M.D., André, A., Massou, F., Fleischhauer, M., Zibrov, A.S. and Lukin, M.D. (2005) Electromagnetically Induced Transparency with Tunable Single-Photon Pulses. Nature, 438, 837-841.
https://doi.org/10.1038/nature04327
[26]  Barnea, N., Friedman, E. and Gal, A. (2021) On the Width of the KD Atom Ground State. Nuclear Physics A, 1006, Article ID: 122112.
https://doi.org/10.1016/j.nuclphysa.2020.122112
[27]  Tilke, A.T., Simmel, F.C., Lorenz, H., Blick, R.H. and Kotthaus, J.P. (2003) Quantum Interference in a One-Dimensional Silicon Nanowire. Physical Review B, 68, Article ID: 075311.
https://doi.org/10.1103/physrevb.68.075311
[28]  Su, H.D. (2011) Research for Optical Properties, Various Shapes and Sizes of Nano-metallic Particles. Department of Physics, National Chung Cheng University, 106.
[29]  Su, H. and Lee, P. (2025) Sub-Atom Particles and Magnetic Monopoles Spin Ice Condensed in Higgs-Field Portals. Journal of Applied Mathematics and Physics, 13, 348-364.
https://doi.org/10.4236/jamp.2025.131016

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133