全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于柱芳烃的光响应主–客体超分子体系研究进展
Research Progress on Photoresponsive Host-Guest Supramolecular Systems Based on Pillararenes

DOI: 10.12677/aac.2025.151003, PP. 22-33

Keywords: 柱芳烃,主–客体作用,光响应,超分子组装
Pillar[n]arenes
, Host-Guest Interaction, Photoresponsive, Supramolecular Assembly

Full-Text   Cite this paper   Add to My Lib

Abstract:

柱芳烃是一类具有独特对称性和柱状空腔结构的新型人工合成大环分子,可通过简单的化学方法对其端基进行功能化修饰,目前已发展成为一类重要的大环基元分子用于构筑各种刺激响应的功能超分子组装材料。光是一种清洁、非侵入性和时空可控的外部刺激,具有光刺激响应特性的主–客体作用超分子体系受到广泛关注。文章总结了近年来在基于柱芳烃的光响应主–客体超分子组装体系和功能材料方面的重要研究进展,系统阐述了目前报道的光响应柱芳烃主–客体超分子组装体系的主要构筑策略和代表性应用。
Pillar[n]arenes are a class of artificial synthetic macrocyclic molecules featuring unique symmetrical and pillar-shaped cavity structures, as well as facile functionalization by chemically modifying their end groups. These features have conferred pillar[n]arenes to be of fundamental importance as macrocyclic building blocks for the construction of copious stimuli-responsive functional supramolecular assembly systems and materials. Light represents a clean and noninvasive external stimulus with unique spatiotemporal controllability, which has attracted considerable attention to the development of photoresponsive host-guest supramolecular systems. This review mainly summarizes the recent progress on photoresponsive pillar[n]arene-based host-guest supramolecular assembly systems and functional materials, with systematical elaboration and perspectives on their construction strategies and applications of currently reported photoresponsive pillar[n]arene-based host-guest supramolecular assembly systems and materials.

References

[1]  Liu, Z., Nalluri, S.K.M. and Stoddart, J.F. (2017) Surveying Macrocyclic Chemistry: From Flexible Crown Ethers to Rigid Cyclophanes. Chemical Society Reviews, 46, 2459-2478.
https://doi.org/10.1039/c7cs00185a
[2]  Yang, L., Wang, X., Yao, H. and Jiang, W. (2019) Naphthotubes: Macrocyclic Hosts with a Biomimetic Cavity Feature. Accounts of Chemical Research, 53, 198-208.
https://doi.org/10.1021/acs.accounts.9b00415
[3]  Chen, F., Geng, W., Cai, K. and Guo, D. (2024) Molecular Recognition of Cyclophanes in Water. Chinese Chemical Letters, 35, Article ID: 109161.
https://doi.org/10.1016/j.cclet.2023.109161
[4]  Xue, M., Yang, Y., Chi, X., Yan, X. and Huang, F. (2015) Development of Pseudorotaxanes and Rotaxanes: From Synthesis to Stimuli-Responsive Motions to Applications. Chemical Reviews, 115, 7398-7501.
https://doi.org/10.1021/cr5005869
[5]  Assaf, K.I. and Nau, W.M. (2015) Cucurbiturils: From Synthesis to High-Affinity Binding and Catalysis. Chemical Society Reviews, 44, 394-418.
https://doi.org/10.1039/c4cs00273c
[6]  Wang, C., Xu, L., Jia, Z. and Loh, T. (2024) Recent Applications of Macrocycles in Supramolecular Catalysis. Chinese Chemical Letters, 35, Article ID: 109075.
https://doi.org/10.1016/j.cclet.2023.109075
[7]  Ma, X. and Zhao, Y. (2014) Biomedical Applications of Supramolecular Systems Based on Host-Guest Interactions. Chemical Reviews, 115, 7794-7839.
https://doi.org/10.1021/cr500392w
[8]  Geng, W., Sessler, J.L. and Guo, D. (2020) Supramolecular Prodrugs Based on Host-Guest Interactions. Chemical Society Reviews, 49, 2303-2315.
https://doi.org/10.1039/c9cs00622b
[9]  Ogoshi, T., Kanai, S., Fujinami, S., Yamagishi, T. and Nakamoto, Y. (2008) para-Bridged Symmetrical Pillar[5]arenes: Their Lewis Acid Catalyzed Synthesis and Host-Guest Property. Journal of the American Chemical Society, 130, 5022-5023.
https://doi.org/10.1021/ja711260m
[10]  Strutt, N.L., Zhang, H., Schneebeli, S.T. and Stoddart, J.F. (2014) Functionalizing Pillar[n]arenes. Accounts of Chemical Research, 47, 2631-2642.
https://doi.org/10.1021/ar500177d
[11]  Si, W., Xin, P., Li, Z. and Hou, J. (2015) Tubular Unimolecular Transmembrane Channels: Construction Strategy and Transport Activities. Accounts of Chemical Research, 48, 1612-1619.
https://doi.org/10.1021/acs.accounts.5b00143
[12]  Ogoshi, T., Yamagishi, T. and Nakamoto, Y. (2016) Pillar-Shaped Macrocyclic Hosts Pillar[n]arenes: New Key Players for Supramolecular Chemistry. Chemical Reviews, 116, 7937-8002.
https://doi.org/10.1021/acs.chemrev.5b00765
[13]  Li, Z. and Yang, Y. (2021) Functional Materials with Pillarene Struts. Accounts of Materials Research, 2, 292-305.
https://doi.org/10.1021/accountsmr.1c00042
[14]  Wada, K. and Ogoshi, T. (2024) Functionalization of Pillar[n]arenes towards Optically Responsive Systems via Host-guest Interactions. Materials Chemistry Frontiers, 8, 1212-1229.
https://doi.org/10.1039/d3qm01176c
[15]  Qu, D., Wang, Q., Zhang, Q., Ma, X. and Tian, H. (2015) Photoresponsive Host-Guest Functional Systems. Chemical Reviews, 115, 7543-7588.
https://doi.org/10.1021/cr5006342
[16]  Wang, L. and Li, Q. (2018) Photochromism into Nanosystems: Towards Lighting up the Future Nanoworld. Chemical Society Reviews, 47, 1044-1097.
https://doi.org/10.1039/c7cs00630f
[17]  Lou, X. and Yang, Y. (2020) Pillar[n]arene‐Based Supramolecular Switches in Solution and on Surfaces. Advanced Materials, 32, Article ID: 2003263.
https://doi.org/10.1002/adma.202003263
[18]  Ogoshi, T., Kida, K. and Yamagishi, T. (2012) Photoreversible Switching of the Lower Critical Solution Temperature in a Photoresponsive Host-Guest System of Pillar[6]arene with Triethylene Oxide Substituents and an Azobenzene Derivative. Journal of the American Chemical Society, 134, 20146-20150.
https://doi.org/10.1021/ja3091033
[19]  Yu, G., Han, C., Zhang, Z., Chen, J., Yan, X., Zheng, B., et al. (2012) Pillar[6]arene-Based Photoresponsive Host-Guest Complexation. Journal of the American Chemical Society, 134, 8711-8717.
https://doi.org/10.1021/ja302998q
[20]  Xia, D., Yu, G., Li, J. and Huang, F. (2014) Photo-Responsive Self-Assembly Based on a Water-Soluble Pillar[6]arene and an Azobenzene-Containing Amphiphile in Water. Chemical Communications, 50, 3606-3608.
https://doi.org/10.1039/c3cc49686d
[21]  Yu, Y., Qu, X., Li, J., Huang, F. and Yang, J. (2023) Arylazopyrazole as a Photo-Switch for Controllable Self-Assembly of Pillar[6]arene-Based Supramolecular Amphiphiles. Chemical Communications, 59, 14265-14268.
https://doi.org/10.1039/d3cc05018a
[22]  Wang, Y., Xu, J., Chen, Y., Niu, L., Wu, L., Tung, C., et al. (2014) Photoresponsive Supramolecular Self-Assembly of Monofunctionalized Pillar[5]arene Based on Stiff Stilbene. Chemical Communications, 50, 7001-7003.
https://doi.org/10.1039/c4cc02760d
[23]  Pan, S., Ni, M., Mu, B., Li, Q., Hu, X., Lin, C., et al. (2015) Well‐Defined Pillararene‐Based Azobenzene Liquid Crystalline Photoresponsive Materials and Their Thin Films with Photomodulated Surfaces. Advanced Functional Materials, 25, 3571-3580.
https://doi.org/10.1002/adfm.201500942
[24]  Ogoshi, T., Takashima, S. and Yamagishi, T. (2018) Photocontrolled Reversible Guest Uptake, Storage, and Release by Azobenzene-Modified Microporous Multilayer Films of Pillar[5]arenes. Journal of the American Chemical Society, 140, 1544-1548.
https://doi.org/10.1021/jacs.7b12893
[25]  Stoddart, J.F. (2017) Mechanically Interlocked Molecules (MIMs)—Molecular Shuttles, Switches, and Machines (Nobel Lecture). Angewandte Chemie International Edition, 56, 11094-11125.
https://doi.org/10.1002/anie.201703216
[26]  Mena-Hernando, S. and Pérez, E.M. (2019) Mechanically Interlocked Materials. Rotaxanes and Catenanes Beyond the Small Molecule. Chemical Society Reviews, 48, 5016-5032.
https://doi.org/10.1039/c8cs00888d
[27]  Kato, K., Fa, S., Ohtani, S., Shi, T., Brouwer, A.M. and Ogoshi, T. (2022) Noncovalently Bound and Mechanically Interlocked Systems Using Pillar[n]arenes. Chemical Society Reviews, 51, 3648-3687.
https://doi.org/10.1039/d2cs00169a
[28]  Ogoshi, T., Yamafuji, D., Aoki, T. and Yamagishi, T. (2011) Photoreversible Transformation between Seconds and Hours Time-Scales: Threading of Pillar[5]arene onto the Azobenzene-End of a Viologen Derivative. The Journal of Organic Chemistry, 76, 9497-9503.
https://doi.org/10.1021/jo202040p
[29]  Ogoshi, T., Kotera, D., Fa, S., Nishida, S., Kakuta, T., Yamagishi, T., et al. (2020) A Light-Operated Pillar[6]arene-Based Molecular Shuttle. Chemical Communications, 56, 10871-10874.
https://doi.org/10.1039/d0cc03945d
[30]  Wang, Y., Tian, Y., Chen, Y., Niu, L., Wu, L., Tung, C., et al. (2018) A Light-Driven Molecular Machine Based on Stiff Stilbene. Chemical Communications, 54, 7991-7994.
https://doi.org/10.1039/c8cc04542a
[31]  Yao, J., Wu, W., Xiao, C., Su, D., Zhong, Z., Mori, T., et al. (2021) Overtemperature-Protection Intelligent Molecular Chiroptical Photoswitches. Nature Communications, 12, Article No. 2600.
https://doi.org/10.1038/s41467-021-22880-z
[32]  Tuo, D., Shi, T., Ohtani, S. and Ogoshi, T. (2023) Responsive Pillar[n]arene Materials. Responsive Materials, 2, e20230024.
https://doi.org/10.1002/rpm.20230024
[33]  Jothi Nayaki, S., Roja, A., Ravindhiran, R., Sivarajan, K., Arunachalam, M. and Dhandapani, K. (2024) Pillar[n]arenes in the Fight against Biofilms: Current Developments and Future Perspectives. ACS Infectious Diseases, 10, 1080-1096.
https://doi.org/10.1021/acsinfecdis.3c00697
[34]  Wang, Z., Wang, X. and Yang, Y. (2023) Pillararene‐Based Supramolecular Polymers for Adsorption and Separation. Advanced Materials, 36, Article ID: 2301721.
https://doi.org/10.1002/adma.202301721
[35]  Zhou, L., Cao, S., Liu, C., Zhang, H. and Zhao, Y. (2023) Pillar[n]arene-Based Polymeric Systems for Biomedical Applications. Coordination Chemistry Reviews, 491, Article ID: 215260.
https://doi.org/10.1016/j.ccr.2023.215260
[36]  Panja, S. and Adams, D.J. (2021) Stimuli Responsive Dynamic Transformations in Supramolecular Gels. Chemical Society Reviews, 50, 5165-5200.
https://doi.org/10.1039/d0cs01166e
[37]  Chen, L. and Yang, H. (2018) Construction of Stimuli-Responsive Functional Materials via Hierarchical Self-Assembly Involving Coordination Interactions. Accounts of Chemical Research, 51, 2699-2710.
https://doi.org/10.1021/acs.accounts.8b00317
[38]  Lu, W., Le, X., Zhang, J., Huang, Y. and Chen, T. (2017) Supramolecular Shape Memory Hydrogels: A New Bridge between Stimuli-Responsive Polymers and Supramolecular Chemistry. Chemical Society Reviews, 46, 1284-1294.
https://doi.org/10.1039/c6cs00754f
[39]  Braegelman, A.S. and Webber, M.J. (2019) Integrating Stimuli-Responsive Properties in Host-Guest Supramolecular Drug Delivery Systems. Theranostics, 9, 3017-3040.
https://doi.org/10.7150/thno.31913
[40]  Xia, D., Wang, P., Ji, X., Khashab, N.M., Sessler, J.L. and Huang, F. (2020) Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and Macrocycle-Based Host-Guest Interactions. Chemical Reviews, 120, 6070-6123.
https://doi.org/10.1021/acs.chemrev.9b00839
[41]  Lou, X., Zhang, S., Wang, Y. and Yang, Y. (2023) Smart Organic Materials Based on Macrocycle Hosts. Chemical Society Reviews, 52, 6644-6663.
https://doi.org/10.1039/d3cs00506b

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133