全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

水系锌离子电池正极材料的研究进展
Research Progress on Cathode Materials for Aqueous Zinc-Ion Batteries

DOI: 10.12677/aac.2025.151002, PP. 8-21

Keywords: 水系锌离子电池,正极材料,优化策略
Aqueous Zinc-Ion Batteries
, Cathode Material, Optimization Strategy

Full-Text   Cite this paper   Add to My Lib

Abstract:

水系锌离子电池(AZIBs)作为未来大规模电化学储能解决方案的候选者,已经获得了广泛的关注。它的吸引力在于它的成本效益、低排放、内在安全性和较高的能量密度。因此,高性能水系锌离子电池的设计和改进得到了广泛的研究。在这篇综述中,我们对各种正极的设计策略、电化学性能、挑战和优化进行了分类和比较,包括锰(Mn)基材料和钒(V)基材料。同时,还讨论了提高性能的策略。最后,总结了水系锌离子电池正极面临的挑战,并提出了未来的研究方向。总的来说,文章探索不同的正极为研究人员选择合适的材料以进一步提高水系锌离子电池的性能提供了指导。
Aqueous zinc-ion batteries (AZIBs), as a candidate for large-scale electrochemical energy storage solutions in the future, have received extensive attention. Its attraction lie in its cost-effectiveness, low emission, inherent safety, and high energy density. Therefore, the design and improvement of high-performance aqueous zinc-ion batteries have been widely studied. In this review, we classified and compared the design strategies, electrochemical properties, challenges, and optimization of various cathode materials, including manganese (Mn)-based materials and vanadium (V)-based materials. At the same time, the strategy of improving performance is also discussed. Finally, the challenges faced by the positive electrode of aqueous zinc-ion batteries are summarized, and the future research direction is put forward. Generally speaking, this paper explores different positive electrodes and provides guidance for researchers to choose suitable materials to further improve the performance of aqueous zinc-ion batteries.

References

[1]  Gao, H., Li, J., Zhang, F., Li, C., Xiao, J., Nie, X., et al. (2024) Revealing the Potential and Challenges of High-Entropy Layered Cathodes for Sodium-Based Energy Storage. Advanced Energy Materials, 14, Article 2304529.
https://doi.org/10.1002/aenm.202304529
[2]  Shao, R., Sun, Z., Wang, L., Pan, J., Yi, L., Zhang, Y., et al. (2024) Resolving the Origins of Superior Cycling Performance of Antimony Anode in Sodium-Ion Batteries: A Comparison with Lithium-Ion Batteries. Angewandte Chemie International Edition, 63, e202320183.
https://doi.org/10.1002/anie.202320183
[3]  Ren, D., Feng, X., Liu, L., Hsu, H., Lu, L., Wang, L., et al. (2021) Investigating the Relationship between Internal Short Circuit and Thermal Runaway of Lithium-Ion Batteries under Thermal Abuse Condition. Energy Storage Materials, 34, 563-573.
https://doi.org/10.1016/j.ensm.2020.10.020
[4]  Zhao, D., Pu, X., Wang, C., Pan, Z., Ding, M., Cao, Y., et al. (2024) Low-Strain Layered Zn0.56VOPO4∙2H2O as a High-Voltage and Long-Lifespan Cathode Material for Zn-Ion Batteries. Energy Storage Materials, 66, Article 103239.
https://doi.org/10.1016/j.ensm.2024.103239
[5]  Dai, Y., Zhang, C., Li, J., Gao, X., Hu, P., Ye, C., et al. (2024) Inhibition of Vanadium Cathodes Dissolution in Aqueous Zn-Ion Batteries. Advanced Materials, 36, Article 2310645.
https://doi.org/10.1002/adma.202310645
[6]  Yan, H., Li, S., Zhong, J. and Li, B. (2023) An Electrochemical Perspective of Aqueous Zinc Metal Anode. Nano-Micro Letters, 16, Article No. 15.
https://doi.org/10.1007/s40820-023-01227-x
[7]  Xie, D., Liu, H., Liu, C., Diao, W., Tao, F., Jiang, W., et al. (2024) Co-Solvent and Additive Joint Engineering Enable Long-Life and Wide-Temperature Zn Metal Battery. Energy Storage Materials, 70, Article 103524.
https://doi.org/10.1016/j.ensm.2024.103524
[8]  Yang, J., Liu, H., Zhao, X., Zhang, X., Zhang, K., Ma, M., et al. (2024) Janus Binder Chemistry for Synchronous Enhancement of Iodine Species Adsorption and Redox Kinetics toward Sustainable Aqueous Zn-I2 Batteries. Journal of the American Chemical Society, 146, 6628-6637.
https://doi.org/10.1021/jacs.3c12638
[9]  Mo, L., Huang, Y., Wang, Y., Wei, T., Zhang, X., Zhang, H., et al. (2023) Electrochemically Induced Phase Transformation in Vanadium Oxide Boosts Zn-Ion Intercalation. ACS Nano, 18, 1172-1180.
https://doi.org/10.1021/acsnano.3c11217
[10]  Iftikhar Khan, M., Wang, Z., Jia, X. and Cao, G. (2023) Enhancing Aqueous Zinc-Ion Battery Performance through Structural Modification of Hydrated Vanadate with Lanthanum. ACS Applied Energy Materials, 7, 84-92.
https://doi.org/10.1021/acsaem.3c02140
[11]  Chen, M., Yang, M., Han, X., Chen, J., Zhang, P. and Wong, C. (2023) Suppressing Rampant and Vertical Deposition of Cathode Intermediate Product via PH Regulation toward Large-Capacity and High-Durability Zn//MNO2 Batteries. Advanced Materials, 36, Article 2304997.
https://doi.org/10.1002/adma.202304997
[12]  Wang, H., Guo, R., Ma, Y. and Zhou, F. (2023) Cross-Doped Mn/Mo Oxides with Core-Shell Structures Designed by a Self-Template Strategy for Durable Aqueous Zinc-Ion Batteries. Advanced Functional Materials, 33, Article 2301351.
https://doi.org/10.1002/adfm.202301351
[13]  Zhai, X., Yu, Y. and Hu, Y. (2023) Engineering Aqueous Zn-MnO2 Microbatteries Using a Synergistic Reaction Mechanism. ACS Applied Energy Materials, 6, 6171-6182.
https://doi.org/10.1021/acsaem.3c00690
[14]  Ding, L., Wang, L., Gao, J., Yan, T., Li, H., Mao, J., et al. (2023) Facile Zn2+ Desolvation Enabled by Local Coordination Engineering for Long-Cycling Aqueous Zinc-Ion Batteries. Advanced Functional Materials, 33, Article 2301648.
https://doi.org/10.1002/adfm.202301648
[15]  Ye, J.-J., Li, P.-H., Hou, Z., et al. (2024) Se-Dopant Modulated Selective Co-Insertion of H+ and Zn2+ in MnO2 for High-Capacity and Durable Aqueous Zn-Ion Batteries, Angew. Angewandte Chemie International Edition, 2024, e202410900.
[16]  Yang, H., Wan, Y., Sun, K., Zhang, M., Wang, C., He, Z., et al. (2023) Reconciling Mass Loading and Gravimetric Performance of MnO2 Cathodes by 3d-Printed Carbon Structures for Zinc-Ion Batteries. Advanced Functional Materials, 33, Article 2215076.
https://doi.org/10.1002/adfm.202215076
[17]  Xiankai, F., Kaixiong, X., Wei, Z., Weina, D., Hai, Z., Liang, C., et al. (2024) A Novel Improvement Strategy and a Comprehensive Mechanism Insight for α-MnO2 Energy Storage in Rechargeable Aqueous Zinc-Ion Batteries. Carbon Energy, 6, e536.
https://doi.org/10.1002/cey2.536
[18]  Zhou, X., Chen, S., Zhang, Y., Yu, B., Chen, Y., Liu, Y., et al. (2024) Three-Dimensional Conductive Interface and Tip Structure of MnO2 Electrode Facilitate Superior Zinc Ion Batteries. Small Structures, 5, Article 2400057.
https://doi.org/10.1002/sstr.202400057
[19]  Zhao, Y., Zhou, R., Song, Z., Zhang, X., Zhang, T., Zhou, A., et al. (2022) Interfacial Designing of MnO2 Half-Wrapped by Aromatic Polymers for High-Performance Aqueous Zinc-Ion Batteries. Angewandte Chemie, 134, Article 2212231.
https://doi.org/10.1002/ange.202212231
[20]  Zhao, X., Zhang, F., Li, H., Dong, H., Yan, C., Meng, C., et al. (2024) Dynamic Heterostructure Design of MnO2 for High-Performance Aqueous Zinc-Ion Batteries. Energy & Environmental Science, 17, 3629-3640.
https://doi.org/10.1039/d4ee00341a
[21]  Luo, C., Lei, H., Xiao, Y., Nie, X., Li, Y., Wang, Q., et al. (2024) Recent Development in Addressing Challenges and Implementing Strategies for Manganese Dioxide Cathodes in Aqueous Zinc Ion Batteries. Energy Materials, 4, Article 400036.
https://doi.org/10.20517/energymater.2023.119
[22]  Li, Z., Zheng, Y., Jiao, Q., Zhao, Y., Li, H. and Feng, C. (2023) Tailoring Porous Three-Dimensional (Co, Mn) (Co, Mn)2O4/PPY Architecture Towards High-Performance Cathode for Aqueous Zinc-Ion Batteries. Chemical Engineering Journal, 465, Article 142897.
https://doi.org/10.1016/j.cej.2023.142897
[23]  Wang, C., Xiao, B., Huang, J., Xiao, K. and Liu, Z. (2024) Microstructure Strain of ZnMn2O4 Spinel by Regulation of Tetrahedral Sites for High-Performance Aqueous Zinc-Ion Battery. Advanced Functional Materials, 34, Article 2405680.
https://doi.org/10.1002/adfm.202405680
[24]  Deng, S., Tie, Z., Yue, F., Cao, H., Yao, M. and Niu, Z. (2022) Rational Design of Znmn2o4 Quantum Dots in a Carbon Framework for Durable Aqueous Zinc-Ion Batteries. Angewandte Chemie International Edition, 61, e202115877.
https://doi.org/10.1002/anie.202115877
[25]  Liu, Q., Fan, G., Zeng, Y., et al. (2024) Hollow Octahedral Pr6O11-Mn2O3 Heterostructures for High-Performance Aqueous Zn-Ion Batteries. Advanced Energy Materials, 2024, Article 2402743.
[26]  Wu, H., Lv, R., Wang, R., Zhao, Z., Sun, Y., Liu, Y., et al. (2024) Flexible 3D Porous MnOx/rGO Hydrogel with Fiber Reinforced Effect for Enhancing Mechanical and Zinc Storage Performances. Journal of Alloys and Compounds, 976, Article 173363.
https://doi.org/10.1016/j.jallcom.2023.173363
[27]  Liu, Z., Qiu, Z., Li, Z., Wei, T., Fan, Z. and Pang, H. (2024) MnO-Pillared Graphene Blocks Enabling the Ultrastable and Ultrafast Aqueous Zinc Ion Batteries. Science China Chemistry, 67, 2930-2940.
https://doi.org/10.1007/s11426-024-1974-1
[28]  Li, X., Ji, C., Shen, J., Feng, J., Mi, H., Xu, Y., et al. (2023) Amorphous Heterostructure Derived from Divalent Manganese Borate for Ultrastable and Ultrafast Aqueous Zinc Ion Storage. Advanced Science, 10, Article 2205794.
https://doi.org/10.1002/advs.202205794
[29]  Cheng, H., Zhang, S., Guo, W., Wu, Q., Shen, Z., Wang, L., et al. (2023) Hydrolysis of Solid Buffer Enables High-Performance Aqueous Zinc Ion Battery. Advanced Science, 11, Article 2307052.
https://doi.org/10.1002/advs.202307052
[30]  Zhong, X., Kong, Z., Liu, Q., Yang, C., Chen, Y., Qiu, J., et al. (2023) Design Strategy of High Stability Vertically Aligned rGO@V2O5 Heterostructure Cathodes for Flexible Quasi-Solid-State Aqueous Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 15, 58333-58344.
https://doi.org/10.1021/acsami.3c12161
[31]  Liu, M., Hu, A., Yan, Z., Chen, J., He, M., Zhou, B., et al. (2024) Enhancing Zn2+ Diffusion for Dendrite-Free Zinc Anodes via a Robust Zincophilic Clay Mineral Coating. Chemical Engineering Journal, 479, Article 147410.
https://doi.org/10.1016/j.cej.2023.147410
[32]  Sun, D., Niu, H., Wang, Z., Zhang, T., Zhou, X., Zhao, J., et al. (2024) Oxygen-Deficient Znvoh@cc as High-Capacity and Stable Cathode for Aqueous Zinc-Ion Batteries. Chemical Engineering Journal, 496, Article 154300.
https://doi.org/10.1016/j.cej.2024.154300
[33]  Zhang, J., Xia, F., Bao, D., Chen, Y., Hu, L. and Zhu, J. (2024) Two-Dimensional V2O3 Nanosheets Embedded in a Carbon Matrix with Enhanced Performance for Aqueous Zn-Ion Battery. Materials Letters, 357, Article 135706.
https://doi.org/10.1016/j.matlet.2023.135706
[34]  Song, Y., Jing, L., Wang, R., Cui, J., Li, M. and Zhang, Y. (2024) Vanadium Oxide Nanospheres Encapsulated in N-Doped Carbon Nanofibers with Morphology and Defect Dual-Engineering toward Advanced Aqueous Zinc-Ion Batteries. Journal of Energy Chemistry, 89, 599-609.
https://doi.org/10.1016/j.jechem.2023.10.013
[35]  Zhu, Y., Liu, X., Hu, X., Wang, T., Parkin, I.P., Wang, M., et al. (2024) Polyaniline and Water Pre-Intercalated V2O5 Cathodes for High-Performance Planar Zinc-Ion Micro-Batteries. Chemical Engineering Journal, 487, Article 150384.
https://doi.org/10.1016/j.cej.2024.150384
[36]  Jia, D., Shen, Z., Lv, Y., Chen, Z., Li, H., Yu, Y., et al. (2023) In Situ Electrochemical Tuning of Mil-88b(v)@rGO into Amorphous V2O5@rGO as Cathode for High-Performance Aqueous Zinc-Ion Battery. Advanced Functional Materials, 34, Article 2308319.
https://doi.org/10.1002/adfm.202308319
[37]  Lashari, N.u.R., Kumar, A., Ahmed, I., Zhao, J., Hussain, A., Ghani, U., et al. (2023) In-Situ Construction of V2O5 Nanosheet/Nitrogen-Doped Carbon Nanosheet Heterostructures with Interfacial C-O Bridging Bonds as the Cathode Material for Zn Ion Batteries. Small, 20, Article 2309029.
https://doi.org/10.1002/smll.202309029
[38]  Ye, J., Li, P., Zhang, H., Song, Z., Fan, T., Zhang, W., et al. (2023) Manipulating Oxygen Vacancies to Spur Ion Kinetics in V2O5 Structures for Superior Aqueous Zinc-Ion Batteries. Advanced Functional Materials, 33, Article 2305659.
https://doi.org/10.1002/adfm.202305659
[39]  Bao, M., Zhang, Z., An, X., Liu, J., Feng, J., Xi, B., et al. (2022) Introducing Ce Ions and Oxygen Defects into V2O5 Nanoribbons for Efficient Aqueous Zinc Ion Storage. Nano Research, 16, 2445-2453.
https://doi.org/10.1007/s12274-022-4990-2
[40]  Liu, H., Jiang, L., Cao, B., Du, H., Lu, H., Ma, Y., et al. (2022) Van Der Waals Interaction-Driven Self-Assembly of V2O5 Nanoplates and MXene for High-Performing Zinc-Ion Batteries by Suppressing Vanadium Dissolution. ACS Nano, 16, 14539-14548.
https://doi.org/10.1021/acsnano.2c04968
[41]  Wang, Z., Cui, P., Wang, X., Chang, M., Yu, Y., You, J., et al. (2024) Co-Substitution Engineering Boosting the Kinetics and Stability of VO2 for Zn Ion Batteries. Advanced Functional Materials, 34, Article 2407925.
https://doi.org/10.1002/adfm.202407925
[42]  Zhang, C., Wu, Z., Yang, C., Guo, X., Yu, Y. and Yang, Y. (2024) Rational Regulation of Optimal Oxygen Vacancy Concentrations on VO2 for Superior Aqueous Zinc-Ion Battery Cathodes. ACS Applied Materials & Interfaces, 16, 40903-40913.
https://doi.org/10.1021/acsami.4c05618
[43]  He, Q., Hu, T., Wu, Q., Wang, C., Han, X., Chen, Z., et al. (2024) Tunnel-Oriented VO2 (B) Cathode for High-Rate Aqueous Zinc-Ion Batteries. Advanced Materials, 36, Article 2400888.
https://doi.org/10.1002/adma.202400888
[44]  Lv, T., Liu, Y., Wang, H., Yang, S., Liu, C. and Pang, H. (2021) Crystal Water Enlarging the Interlayer Spacing of Ultrathin V2O5·4VO2·2.72H2O Nanobelts for High-Performance Aqueous Zinc-Ion Battery. Chemical Engineering Journal, 411, Article 128533.
https://doi.org/10.1016/j.cej.2021.128533
[45]  Lv, T., Zhu, G., Dong, S., Kong, Q., Peng, Y., Jiang, S., et al. (2022) Co-Intercalation of Dual Charge Carriers in Metal-Ion-Confining Layered Vanadium Oxide Nanobelts for Aqueous Zinc-Ion Batteries. Angewandte Chemie International Edition, 62, e202216089.
https://doi.org/10.1002/anie.202216089
[46]  Guo, J., He, B., Gong, W., Xu, S., Xue, P., Li, C., et al. (2023) Emerging Amorphous to Crystalline Conversion Chemistry in Ca-Doped VO2 Cathodes for High-Capacity and Long-Term Wearable Aqueous Zinc-Ion Batteries. Advanced Materials, 36, Article 2303906.
https://doi.org/10.1002/adma.202303906
[47]  Li, Q., Zhang, Y., Guo, X., Zhang, G., Yang, Y., Du, M., et al. (2024) Layered (AlO)2OH·VO3 Composite Superstructures for Ultralong Lifespan Aqueous Zinc-Ion Batteries. Journal of Colloid and Interface Science, 663, 697-706.
https://doi.org/10.1016/j.jcis.2024.02.189
[48]  Guo, N., Peng, Z., Huo, W., Li, Y., Liu, S., Kang, L., et al. (2023) Stabilizing Zn Metal Anode through Regulation of Zn Ion Transfer and Interfacial Behavior with a Fast Ion Conductor Protective Layer. Small, 19, Article 2303963.
https://doi.org/10.1002/smll.202303963
[49]  Liu, M., Zhu, K., Wan, K., Zhang, X., Wei, J., Hou, Y., et al. (2023) Design of Ti4+/Zr4+ as Dual-Supporting Sites in Na3V2(PO4)3 for the Advanced Aqueous Zinc-Ion Battery Cathode. ACS Applied Materials & Interfaces, 15, 28073-28083.
https://doi.org/10.1021/acsami.3c04004
[50]  Li, W., Jing, X., Jiang, K. and Wang, D. (2021) Observation of Structural Decomposition of Na3V2(PO4)3 and Na3V2(PO4)2F3 as Cathodes for Aqueous Zn-Ion Batteries. ACS Applied Energy Materials, 4, 2797-2807.
https://doi.org/10.1021/acsaem.1c00067

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133