全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

活性污泥生物碳制备及其锂氧电池性能研究
Study on the Preparation of Activated Sludge Biochar and Its Performance of Lithium-Oxygen Battery

DOI: 10.12677/aepe.2025.131001, PP. 1-8

Keywords: 锂氧电池,活性污泥生物质碳,元素掺杂
Lithium-Oxygen Battery
, Activated Sludge Biochar, Element Doping

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过直接碳化制备了具有介孔结构的N、O杂原子掺杂活性污泥生物质碳,后续通过酸洗改性将其应用于非水系锂氧电池正极。其应用于正极可在200 mA/g的电流密度下提供7888 mAh/g的比容量。锂氧电池放电过程会产生例如Li2O2等导电性较差的物质,本文所制备的材料由于介孔丰富,可以促进氧、离子的传输,同时由于N、O杂原子掺杂促进了电化学活性因此可以获得较长的循环寿命。
N, O heteroatom-doped activated sludge biochar with mesoporous structure was prepared by direct carbonization, and then applied to the positive electrode of non-aqueous lithium-oxygen battery by pickling modification. Its application in the cathode can provide a specific capacity of 7888 mAh/g at a current density of 200 mA/g. The discharge process of lithium-oxygen batteries will produce substances with poor conductivity such as Li2O2. The materials prepared in this paper can promote the transport of oxygen and ions due to the abundant mesopores. At the same time, due to the doping of N and O heteroatoms, electrochemical activity can be promoted, and a longer cycle life can be obtained.

References

[1]  Kanan, M.W. and Nocera, D.G. (2008) In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+. Science, 321, 1072-1075.
https://doi.org/10.1126/science.1162018

[2]  Wang, S., Yu, D. and Dai, L. (2011) Polyelectrolyte Functionalized Carbon Nanotubes as Efficient Metal-Free Electrocatalysts for Oxygen Reduction. Journal of the American Chemical Society, 133, 5182-5185.
https://doi.org/10.1021/ja1112904

[3]  Schipper, F. and Aurbach, D. (2016) A Brief Review: Past, Present and Future of Lithium Ion Batteries. Russian Journal of Electrochemistry, 52, 1095-1121.
https://doi.org/10.1134/s1023193516120120

[4]  Yin, Y., Xin, S., Guo, Y. and Wan, L. (2013) Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects. Angewandte Chemie International Edition, 52, 13186-13200.
https://doi.org/10.1002/anie.201304762

[5]  Gasteiger, H.A., Kocha, S.S., Sompalli, B. and Wagner, F.T. (2005) Activity Benchmarks and Requirements for Pt, Pt-Alloy, and Non-Pt Oxygen Reduction Catalysts for PEMFCs. Applied Catalysis B: Environmental, 56, 9-35.
https://doi.org/10.1016/j.apcatb.2004.06.021

[6]  Yi, X., Liu, X., Pan, W., Qin, B., Fang, J., Jiang, K., et al. (2022) Evolution of Discharge Products on Carbon Nanotube Cathodes in Li-O2 Batteries Unraveled by Molecular Dynamics and Density Functional Theory. ACS Catalysis, 12, 5048-5059.
https://doi.org/10.1021/acscatal.2c00409

[7]  Kwak, W., Rosy, Sharon, D., Xia, C., Kim, H., Johnson, L.R., et al. (2020) Lithium-Oxygen Batteries and Related Systems: Potential, Status, and Future. Chemical Reviews, 120, 6626-6683.
https://doi.org/10.1021/acs.chemrev.9b00609

[8]  Geng, D., Ding, N., Hor, T.S.A., Chien, S.W., Liu, Z., Wuu, D., et al. (2016) From Lithium‐Oxygen to Lithium‐Air Batteries: Challenges and Opportunities. Advanced Energy Materials, 6, Article ID: 150216.
https://doi.org/10.1002/aenm.201502164

[9]  Zhao, B., Wu, Y., Han, L., Xia, Z., Wang, Q., Chang, S., et al. (2022) Collective, Bifunctional 1D CNT/2D TMOH Hybrid Sponge as High-Capacity and Long-Cycle Li-O2 Cathode. Energy Storage Materials, 50, 344-354.
https://doi.org/10.1016/j.ensm.2022.05.029

[10]  Li, C., Huang, G., Yu, Y., Xiong, Q., Yan, J. and Zhang, X. (2022) Three Birds with One Stone: An Integrated Cathode-Electrolyte Structure for High‐performance Solid‐State Lithium-Oxygen Batteries. Small, 18, Article ID: 2107833.
https://doi.org/10.1002/smll.202107833

[11]  Wang, H., Xie, K., Wang, L. and Han, Y. (2013) All Carbon Nanotubes and Freestanding Air Electrodes for Rechargeable Li-Air Batteries. RSC Advances, 3, 8236-8241.
https://doi.org/10.1039/c3ra40659h

[12]  Shen, Z., Zhang, Y., Zhou, C., Wen, R. and Wan, L. (2021) Revealing the Correlations between Morphological Evolution and Surface Reactivity of Catalytic Cathodes in Lithium-Oxygen Batteries. Journal of the American Chemical Society, 143, 21604-21612.
https://doi.org/10.1021/jacs.1c09700

[13]  Pan, J., Tian, X.L., Zaman, S., Dong, Z., Liu, H., Park, H.S., et al. (2018) Recent Progress on Transition Metal Oxides as Bifunctional Catalysts for Lithium‐Air and Zinc‐Air Batteries. Batteries & Supercaps, 2, 336-347.
https://doi.org/10.1002/batt.201800082

[14]  Li, Y., Wang, J., Li, X., Geng, D., Li, R. and Sun, X. (2011) Superior Energy Capacity of Graphene Nanosheets for a Nonaqueous Lithium-Oxygen Battery. Chemical Communications, 47, 9438-9440.
https://doi.org/10.1039/c1cc13464g

[15]  McCloskey, B.D., Speidel, A., Scheffler, R., Miller, D.C., Viswanathan, V., Hummelshøj, J.S., et al. (2012) Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries. The Journal of Physical Chemistry Letters, 3, 997-1001.
https://doi.org/10.1021/jz300243r

[16]  Maiti, U.N., Lee, W.J., Lee, J.M., Oh, Y., Kim, J.Y., Kim, J.E., et al. (2013) 25th Anniversary Article: Chemically Modified/Doped Carbon Nanotubes & Graphene for Optimized Nanostructures & Nanodevices. Advanced Materials, 26, 40-67.
https://doi.org/10.1002/adma.201303265

[17]  王帅晴, 杨思文, 李娜, 等. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 2023, 42(8): 4296-306.
[18]  Wang, M., Yao, Y., Tang, Z., Zhao, T., Wu, F., Yang, Y., et al. (2018) Self-Nitrogen-Doped Carbon from Plant Waste as an Oxygen Electrode Material with Exceptional Capacity and Cycling Stability for Lithium-Oxygen Batteries. ACS Applied Materials & Interfaces, 10, 32212-32219.
https://doi.org/10.1021/acsami.8b11282

[19]  Murugesan, C., Senthilkumar, B. and Barpanda, P. (2022) Biowaste-Derived Highly Porous N-Doped Carbon as a Low-Cost Bifunctional Electrocatalyst for Hybrid Sodium-Air Batteries. ACS Sustainable Chemistry & Engineering, 10, 9077-9086.
https://doi.org/10.1021/acssuschemeng.2c01300

[20]  Chen, C., Song, J., Zhu, S., Li, Y., Kuang, Y., Wan, J., et al. (2018) Scalable and Sustainable Approach toward Highly Compressible, Anisotropic, Lamellar Carbon Sponge. Chem, 4, 544-554.
https://doi.org/10.1016/j.chempr.2017.12.028

[21]  Kichambare, P., Kumar, J., Rodrigues, S. and Kumar, B. (2011) Electrochemical Performance of Highly Mesoporous Nitrogen Doped Carbon Cathode in Lithium-Oxygen Batteries. Journal of Power Sources, 196, 3310-3316.
https://doi.org/10.1016/j.jpowsour.2010.11.112

[22]  Li, D., Wang, Q., Yao, Y., Wu, F., Yu, Y. and Zhang, C. (2018) New Application of Waste Citrus Maxima Peel-Derived Carbon as an Oxygen Electrode Material for Lithium Oxygen Batteries. ACS Applied Materials & Interfaces, 10, 32058-32066.
https://doi.org/10.1021/acsami.8b07212

[23]  Fu, P., Zhou, L., Sun, L., Huang, B. and Yuan, Y. (2017) Nitrogen-doped Porous Activated Carbon Derived from Cocoon Silk as a Highly Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. RSC Advances, 7, 13383-13389.
https://doi.org/10.1039/c7ra00433h

[24]  Mi, R., Li, S., Liu, X., Liu, L., Li, Y., Mei, J., et al. (2014) Electrochemical Performance of Binder-Free Carbon Nanotubes with Different Nitrogen Amounts Grown on the Nickel Foam as Cathodes in Li-O2 Batteries. Journal of Materials Chemistry A, 2, 18746-18753.
https://doi.org/10.1039/c4ta03457k

[25]  Liu, H., Zhang, Y., Li, R., Sun, X., Désilets, S., Abou-Rachid, H., et al. (2010) Structural and Morphological Control of Aligned Nitrogen-Doped Carbon Nanotubes. Carbon, 48, 1498-1507.
https://doi.org/10.1016/j.carbon.2009.12.045

[26]  Xiao, J., Mei, D., Li, X., Xu, W., Wang, D., Graff, G.L., et al. (2011) Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Nano Letters, 11, 5071-5078.
https://doi.org/10.1021/nl203332e

[27]  Jang, S., Kim, J., Na, E., Song, M., Choi, J., Song, K., et al. (2019) Facile Synthesis of Mesoporous and Highly Nitrogen/Sulfur Dual-Doped Graphene and Its Ultrahigh Discharge Capacity in Non-Aqueous Lithium Oxygen Batteries. Carbon Letters, 29, 297-305.
https://doi.org/10.1007/s42823-019-00026-y

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133