|
Medical Diagnosis 2025
SIRT1调节生长过程的研究进展
|
Abstract:
儿童生长过程的调节取决于生长激素(Growth Hormone, GH)和胰岛素样生长因子1 (Insulin-Like Growth Factor 1, IGF-1)的作用,其中IGF-1是GH活性的主要介质。最近,有众多学者报道了可能有助于调节GH以及IGF-1分泌的新因素,其中之一是沉默信息调节因子1 (Silent Information Regulator 1, SIRT1)。SIRT1可通过负向调节JAK2/STAT通路,参与肝细胞中GH信号的转导,抑制IGF-1 mRNA的产生。此外,它还参与下丘脑中生长激素释放激素和生长细胞中GH合成的调节。SIRT1被认为参与生长板软骨发育和纵向骨生长,对骨骺生长板有积极影响。此外,也有研究表明SIRT1在宫内生长受限、小于胎龄儿、矮小症方面有重要意义。文章将详细阐述SIRT1可能对儿童生长过程产生的影响。
The regulation of the growth process in children depends on the action of Growth Hormone (GH) and Insulin-Like Growth Factor 1 (IGF-1), of which IGF-1 is the main mediator of GH activity. Recently, many scholars have reported a new factor that may help to regulate the secretion of GH and IGF-1, one of which is Silent Information Regulator 1 (SIRT1). SIRT1 can negatively regulate the JAK2/STAT pathway, participate in the transduction of GH signal in hepatocytes, and inhibit the production of IGF-1 mRNA. In addition, it is involved in the regulation of GH-releasing hormone in the hypothalamus and GH synthesis in growth cells. SIRT1 is thought to be involved in growth plate chondrogenesis and longitudinal bone growth, with a positive effect on the epiphyseal growth plate. In addition, some studies have shown that SIRT1 plays an important role in intrauterine growth restriction, small for gestational age, and short stature. This article will elaborate on the possible effects of SIRT1 on the growth of children.
[1] | Caputo, M., Pigni, S., Agosti, E., Daffara, T., Ferrero, A., Filigheddu, N., et al. (2021) Regulation of GH and GH Signaling by Nutrients. Cells, 10, Article 1376. https://doi.org/10.3390/cells10061376 |
[2] | Lewiński, A., Karbownik-Lewińska, M., Wieczorek-Szukała, K., Stasiak, M. and Stawerska, R. (2021) Contribution of Ghrelin to the Pathogenesis of Growth Hormone Deficiency. International Journal of Molecular Sciences, 22, Article 9066. https://doi.org/10.3390/ijms22169066 |
[3] | Ranke, M.B. and Wit, J.M. (2018) Growth Hormone—Past, Present and Future. Nature Reviews Endocrinology, 14, 285-300. https://doi.org/10.1038/nrendo.2018.22 |
[4] | Jin, Q., Ma, F., Liu, T., Yang, L., Mao, H., Wang, Y., et al. (2024) Sirtuins in Kidney Diseases: Potential Mechanism and Therapeutic Targets. Cell Communication and Signaling, 22, Article No. 114. https://doi.org/10.1186/s12964-023-01442-4 |
[5] | Patra, S., Praharaj, P.P., Singh, A. and Bhutia, S.K. (2023) Targeting Sirt1-Regulated Autophagic Cell Death as a Novel Therapeutic Avenue for Cancer Prevention. Drug Discovery Today, 28, Article 103692. https://doi.org/10.1016/j.drudis.2023.103692 |
[6] | Tian, C., Huang, R. and Xiang, M. (2024) SIRT1: Harnessing Multiple Pathways to Hinder NAFLD. Pharmacological Research, 203, Article 107155. https://doi.org/10.1016/j.phrs.2024.107155 |
[7] | Mihanfar, A., Akbarzadeh, M., Ghazizadeh Darband, S., Sadighparvar, S. and Majidinia, M. (2021) SIRT1: A Promising Therapeutic Target in Type 2 Diabetes Mellitus. Archives of Physiology and Biochemistry, 130, 13-28. https://doi.org/10.1080/13813455.2021.1956976 |
[8] | Ding, X., Zhu, C., Wang, W., Li, M., Ma, C. and Gao, B. (2024) SIRT1 Is a Regulator of Autophagy: Implications for the Progression and Treatment of Myocardial Ischemia-Reperfusion. Pharmacological Research, 199, Article 106957. https://doi.org/10.1016/j.phrs.2023.106957 |
[9] | Fedorczak, A., Lewiński, A. and Stawerska, R. (2023) Involvement of Sirtuin 1 in the Growth Hormone/Insulin-Like Growth Factor 1 Signal Transduction and Its Impact on Growth Processes in Children. International Journal of Molecular Sciences, 24, Article 15406. https://doi.org/10.3390/ijms242015406 |
[10] | Yamamoto, M., Iguchi, G., Fukuoka, H., Suda, K., Bando, H., Takahashi, M., et al. (2013) SIRT1 Regulates Adaptive Response of the Growth Hormone—Insulin-Like Growth Factor-I Axis under Fasting Conditions in Liver. Proceedings of the National Academy of Sciences, 110, 14948-14953. https://doi.org/10.1073/pnas.1220606110 |
[11] | Nie, Y., Erion, D.M., Yuan, Z., Dietrich, M., Shulman, G.I., Horvath, T.L., et al. (2009) STAT3 Inhibition of Gluconeogenesis Is Downregulated by Sirt1. Nature Cell Biology, 11, 492-500. https://doi.org/10.1038/ncb1857 |
[12] | Satoh, A., Brace, C.S., Ben-Josef, G., West, T., Wozniak, D.F., Holtzman, D.M., et al. (2010) SIRT1 Promotes the Central Adaptive Response to Diet Restriction through Activation of the Dorsomedial and Lateral Nuclei of the Hypothalamus. The Journal of Neuroscience, 30, 10220-10232. https://doi.org/10.1523/jneurosci.1385-10.2010 |
[13] | Furigo, I.C., Teixeira, P.D.S., de Souza, G.O., Couto, G.C.L., Romero, G.G., Perelló, M., et al. (2019) Growth Hormone Regulates Neuroendocrine Responses to Weight Loss via AgRP Neurons. Nature Communications, 10, Article No. 662. https://doi.org/10.1038/s41467-019-08607-1 |
[14] | de Lima, J.B.M., Ubah, C., Debarba, L.K., Ayyar, I., Didyuk, O. and Sadagurski, M. (2021) Hypothalamic GHR—SIRT1 Axis in Fasting. Cells, 10, Article 891. https://doi.org/10.3390/cells10040891 |
[15] | Monteserin‐Garcia, J., Al‐Massadi, O., Seoane, L.M., Alvarez, C.V., Shan, B., Stalla, J., et al. (2013) Sirt1 Inhibits the Transcription Factor CREB to Regulate Pituitary Growth Hormone Synthesis. The FASEB Journal, 27, 1561-1571. https://doi.org/10.1096/fj.12-220129 |
[16] | Liu-Bryan, R. and Terkeltaub, R. (2014) Emerging Regulators of the Inflammatory Process in Osteoarthritis. Nature Reviews Rheumatology, 11, 35-44. https://doi.org/10.1038/nrrheum.2014.162 |
[17] | Shtaif, B., Bar-Maisels, M., Gabet, Y., Hiram-Bab, S., Yackobovitch-Gavan, M., Phillip, M., et al. (2020) Cartilage-Specific Knockout of Sirt1 Significantly Reduces Bone Quality and Catch-Up Growth Efficiency. Bone, 138, Article 115468. https://doi.org/10.1016/j.bone.2020.115468 |
[18] | Cheng, D., Zhang, L. and Liang, X. (2022) Sirt1 Targeted by miR‐211‐5p Regulated Proliferation and Apoptosis of Dex‐treated Growth Plate Chondrocytes via Mediating SOX2. Clinical and Experimental Pharmacology and Physiology, 50, 50-58. https://doi.org/10.1111/1440-1681.13721 |
[19] | Arul Nambi Rajan, K., Khater, M., Soncin, F., Pizzo, D., Moretto-Zita, M., Pham, J., et al. (2018) Sirtuin1 Is Required for Proper Trophoblast Differentiation and Placental Development in Mice. Placenta, 62, 1-8. https://doi.org/10.1016/j.placenta.2017.12.002 |
[20] | Chriett, S., Le Huërou-Luron, I., Vidal, H. and Pirola, L. (2016) Dysregulation of Sirtuins and Key Metabolic Genes in Skeletal Muscle of Pigs with Spontaneous Intrauterine Growth Restriction Is Associated with Alterations of Circulating IGF-1. General and Comparative Endocrinology, 232, 76-85. https://doi.org/10.1016/j.ygcen.2015.12.028 |
[21] | Griffin, I.J. (2015) Catch-up Growth: Basic Mechanisms. In: Embleton, N.D., Katz, J. and Ziegler, E.E., Eds., Nestlé Nutrition Institute Workshop Series, S. Karger AG, 87-97. https://doi.org/10.1159/000365806 |
[22] | Kaplan, D.S., Canak, A., Isık, E., Orkmez, M. and Kumru, B. (2018) Relationship of Fibroblast Growth Factor 21, Sirtuin 1, Visfatin, and Regulators in Children with Short Stature. Growth Factors, 36, 172-177. https://doi.org/10.1080/08977194.2018.1513504 |
[23] | Mäkelä, J., Tselykh, T.V., Maiorana, F., Eriksson, O., Do, H.T., Mudò, G., et al. (2014) Fibroblast Growth Factor-21 Enhances Mitochondrial Functions and Increases the Activity of PGC-1α in Human Dopaminergic Neurons via Sirtuin-1. SpringerPlus, 3, Article No. 2. https://doi.org/10.1186/2193-1801-3-2 |
[24] | Fedorczak, A., Kowalik, D., Kopciuch, J., Głowacka, E., Mikołajczyk, K., Tkaczyk, M., et al. (2024) Relationship between Serum Sirtuin 1 and Growth Hormone/Insulin-Like Growth Factor 1 Concentrations in Children with Growth Hormone Deficiency and Idiopathic Short Stature. Biomedicines, 12, Article 1433. https://doi.org/10.3390/biomedicines12071433 |