|
间充质干细胞工程化修饰策略在基于干细胞治疗中的研究进展
|
Abstract:
间充质干细胞(Mesenchymal stem cells, MSCs)因其多向分化、自我更新、免疫调控等功能,可治疗多种疾病。尽管MSCs疗法在一定程度上已被证明是安全有效的,但在临床应用中,其疗效和安全性仍存在局限性,主要体现在MSCs靶向性不足、分化能力受限、体内存活率低及药物递送效率不足等方面。为解决这些问题,目前出现多种工程化修饰技术,包括基因工程、表面修饰、物理化学修饰和组织工程等,以提高MSCs疗法的治疗效果和安全性。本文详细介绍了不同工程化修饰策略,并重点阐述各工程化修饰下MSCs功能化的实现和临床应用前景。
Mesenchymal stem cells (MSCs) hold significant promise for the treatment of a wide range of diseases, owing to their multi-lineage differentiation potential, self-renewal capabilities, and immune regulatory properties. Although MSCs-based therapies have demonstrated safety and efficacy to some extent, their clinical application remains limited. These limitations are primarily due to challenges such as insufficient targeting of MSCs, restricted differentiation capacity, low in vivo survival rates, and poor drug delivery efficiency. To address these issues, a variety of engineering strategies, including genetic modification, surface functionalization, physicochemical modification, and tissue engineering, have been developed to enhance the therapeutic efficacy and safety of MSCs therapies. This paper provides a comprehensive overview of these engineering approaches and discusses their potential for future clinical application in MSCs-based therapies.
[1] | Chamberlain, G., Fox, J., Ashton, B. and Middleton, J. (2007) Concise Review: Mesenchymal Stem Cells: Their Phenotype, Differentiation Capacity, Immunological Features, and Potential for Homing. Stem Cells, 25, 2739-2749. https://doi.org/10.1634/stemcells.2007-0197 |
[2] | Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F.C., Krause, D.S., et al. (2006) Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy, 8, 315-317. https://doi.org/10.1080/14653240600855905 |
[3] | Wang, L., Liu, K., Sytwu, H., Yen, M. and Yen, B.L. (2021) Advances in Mesenchymal Stem Cell Therapy for Immune and Inflammatory Diseases: Use of Cell-Free Products and Human Pluripotent Stem Cell-Derived Mesenchymal Stem Cells. Stem Cells Translational Medicine, 10, 1288-1303. https://doi.org/10.1002/sctm.21-0021 |
[4] | Zhang, J., Huang, X., Wang, H., Liu, X., Zhang, T., Wang, Y., et al. (2015) The Challenges and Promises of Allogeneic Mesenchymal Stem Cells for Use as a Cell-Based Therapy. Stem Cell Research & Therapy, 6, Article No. 234. https://doi.org/10.1186/s13287-015-0240-9 |
[5] | Uccelli, A., Moretta, L. and Pistoia, V. (2008) Mesenchymal Stem Cells in Health and Disease. Nature Reviews Immunology, 8, 726-736. https://doi.org/10.1038/nri2395 |
[6] | Liu, H., Li, R., Liu, T., Yang, L., Yin, G. and Xie, Q. (2020) Immunomodulatory Effects of Mesenchymal Stem Cells and Mesenchymal Stem Cell-Derived Extracellular Vesicles in Rheumatoid Arthritis. Frontiers in Immunology, 11, Article No. 1912. https://doi.org/10.3389/fimmu.2020.01912 |
[7] | Shen, Z., Huang, W., Liu, J., Tian, J., Wang, S. and Rui, K. (2021) Effects of Mesenchymal Stem Cell-Derived Exosomes on Autoimmune Diseases. Frontiers in Immunology, 12, Article ID: 749192. https://doi.org/10.3389/fimmu.2021.749192 |
[8] | Lin, B., Chen, J., Qiu, W., Wang, K., Xie, D., Chen, X., et al. (2017) Allogeneic Bone Marrow-Derived Mesenchymal Stromal Cells for Hepatitis B Virus-Related Acute‐on‐Chronic Liver Failure: A Randomized Controlled Trial. Hepatology, 66, 209-219. https://doi.org/10.1002/hep.29189 |
[9] | Pan, Y., Wu, W., Jiang, X. and Liu, Y. (2023) Mesenchymal Stem Cell-Derived Exosomes in Cardiovascular and Cerebrovascular Diseases: From Mechanisms to Therapy. Biomedicine & Pharmacotherapy, 163, Article ID: 114817. https://doi.org/10.1016/j.biopha.2023.114817 |
[10] | Yamanaka, S. (2020) Pluripotent Stem Cell-Based Cell Therapy—Promise and Challenges. Cell Stem Cell, 27, 523-531. https://doi.org/10.1016/j.stem.2020.09.014 |
[11] | Chiou, S., Ong, H.K.A., Chou, S., Aldoghachi, A.F., Loh, J.K., Verusingam, N.D., et al. (2023) Current Trends and Promising Clinical Utility of IPSC-Derived MSC (iMSC). In: Progress in Molecular Biology and Translational Science, Elsevier, 131-154. https://doi.org/10.1016/bs.pmbts.2023.04.002 |
[12] | Ikeda, Y., Makino, A., Matchett, W.E., Holditch, S.J., Lu, B., Dietz, A.B., et al. (2015) A Novel Intranuclear RNA Vector System for Long-Term Stem Cell Modification. Gene Therapy, 23, 256-262. https://doi.org/10.1038/gt.2015.108 |
[13] | Ravin, S.S.T., Kennedy, D.R., Naumann, N., Kennedy, J.S., Choi, U., Hartnett, B.J., et al. (2006) Correction of Canine X-Linked Severe Combined Immunodeficiency by in Vivo Retroviral Gene Therapy. Blood, 107, 3091-3097. https://doi.org/10.1182/blood-2005-10-4057 |
[14] | Kohn, D.B., Booth, C., Shaw, K.L., Xu-Bayford, J., Garabedian, E., Trevisan, V., et al. (2021) Autologous Ex Vivo Lentiviral Gene Therapy for Adenosine Deaminase Deficiency. New England Journal of Medicine, 384, 2002-2013. https://doi.org/10.1056/nejmoa2027675 |
[15] | Wang, C., Wang, Y., Wang, H., Yang, H., Cao, Y., Xia, D., et al. (2020) SFRP2 Enhances Dental Pulp Stem Cell‐mediated Dentin Regeneration in Rabbit Jaw. Oral Diseases, 27, 1738-1746. https://doi.org/10.1111/odi.13698 |
[16] | Gutierrez-Guerrero, A., Cosset, F. and Verhoeyen, E. (2020) Lentiviral Vector Pseudotypes: Precious Tools to Improve Gene Modification of Hematopoietic Cells for Research and Gene Therapy. Viruses, 12, Article No. 1016. https://doi.org/10.3390/v12091016 |
[17] | Cho, Y., Cha, M., Song, B., Kim, I., Song, H., Chang, W., et al. (2012) Enhancement of MSC Adhesion and Therapeutic Efficiency in Ischemic Heart Using Lentivirus Delivery with Periostin. Biomaterials, 33, 1376-1385. https://doi.org/10.1016/j.biomaterials.2011.10.078 |
[18] | Smith, L.J., Ul-Hasan, T., Carvaines, S.K., Van Vliet, K., Yang, E., Wong, K.K., et al. (2014) Gene Transfer Properties and Structural Modeling of Human Stem Cell-Derived AAV. Molecular Therapy, 22, 1625-1634. https://doi.org/10.1038/mt.2014.107 |
[19] | Hammer, K., Kazcorowski, A., Liu, L., Behr, M., Schemmer, P., Herr, I., et al. (2015) Engineered Adenoviruses Combine Enhanced Oncolysis with Improved Virus Production by Mesenchymal Stromal Carrier Cells. International Journal of Cancer, 137, 978-990. https://doi.org/10.1002/ijc.29442 |
[20] | McCarter, S.D., Scott, J.R., Lee, P.J., Zhang, X., Choi, A.M.K., McLean, C.A., et al. (2003) Cotransfection of Heme Oxygenase-1 Prevents the Acute Inflammation Elicited by a Second Adenovirus. Gene Therapy, 10, 1629-1635. https://doi.org/10.1038/sj.gt.3302063 |
[21] | Fusaki, N., Ban, H., Nishiyama, A., Saeki, K. and Hasegawa, M. (2009) Efficient Induction of Transgene-Free Human Pluripotent Stem Cells Using a Vector Based on Sendai Virus, an RNA Virus That Does Not Integrate into the Host Genome. Proceedings of the Japan Academy, Series B, 85, 348-362. https://doi.org/10.2183/pjab.85.348 |
[22] | Chow, Y.T., Chen, S., Wang, R., Liu, C., Kong, C., Li, R.A., et al. (2016) Single Cell Transfection through Precise Microinjection with Quantitatively Controlled Injection Volumes. Scientific Reports, 6, Article No. 24127. https://doi.org/10.1038/srep24127 |
[23] | Valero, A., Post, J.N., van Nieuwkasteele, J.W., ter Braak, P.M., Kruijer, W. and van den Berg, A. (2008) Gene Transfer and Protein Dynamics in Stem Cells Using Single Cell Electroporation in a Microfluidic Device. Lab Chip, 8, 62-67. https://doi.org/10.1039/b713420g |
[24] | Mun, J., Shin, K.K., Kwon, O., Lim, Y.T. and Oh, D. (2016) Minicircle Microporation-Based Non-Viral Gene Delivery Improved the Targeting of Mesenchymal Stem Cells to an Injury Site. Biomaterials, 101, 310-320. https://doi.org/10.1016/j.biomaterials.2016.05.057 |
[25] | Kim, J.H., Shin, K., Li, T.Z. and Suh, H. (2010) Potential of Nucleofected Human Mscs for Insulin Secretion. Journal of Tissue Engineering and Regenerative Medicine, 5, 761-769. https://doi.org/10.1002/term.371 |
[26] | Otani, K., Yamahara, K., Ohnishi, S., Obata, H., Kitamura, S. and Nagaya, N. (2009) Nonviral Delivery of siRNA into Mesenchymal Stem Cells by a Combination of Ultrasound and Microbubbles. Journal of Controlled Release, 133, 146-153. https://doi.org/10.1016/j.jconrel.2008.09.088 |
[27] | Gong, L., Jiang, C., Liu, L., Wan, S., Tan, W., Ma, S., et al. (2017) Transfection of Neurotrophin-3 into Neural Stem Cells Using Ultrasound with Microbubbles to Treat Denervated Muscle Atrophy. Experimental and Therapeutic Medicine, 15, 620-626. https://doi.org/10.3892/etm.2017.5439 |
[28] | Mellott, A.J., Forrest, M.L. and Detamore, M.S. (2012) Physical Non-Viral Gene Delivery Methods for Tissue Engineering. Annals of Biomedical Engineering, 41, 446-468. https://doi.org/10.1007/s10439-012-0678-1 |
[29] | Xu, X., et al. (2011) Encapsulation of Plasmid DNA in Calcium Phosphate Nanoparticles: Stem Cell Uptake and Gene Transfer Efficiency. International Journal of Nanomedicine, 6, 3335-3349. https://doi.org/10.2147/ijn.s27370 |
[30] | Salvador, J., Berthelot, J., Bony, C., Robin, B., Him, J.L.K., Noël, D., et al. (2022) Size-Tunable Lipid Vectors for Controlled Local Delivery of siRNA from Gene Activated Matrix. Acta Biomaterialia, 153, 97-107. https://doi.org/10.1016/j.actbio.2022.09.016 |
[31] | Li, L., et al. (2012) Cationic Lipid-Coated PEI/DNA Polyplexes with Improved Efficiency and Reduced Cytotoxicity for Gene Delivery into Mesenchymal Stem Cells. International Journal of Nanomedicine, 7, 4637-4648. https://doi.org/10.2147/ijn.s33923 |
[32] | Benoit, D.S.W. and Boutin, M.E. (2012) Controlling Mesenchymal Stem Cell Gene Expression Using Polymer-Mediated Delivery of siRNA. Biomacromolecules, 13, 3841-3849. https://doi.org/10.1021/bm301294n |
[33] | Kong, L., Alves, C.S., Hou, W., Qiu, J., Möhwald, H., Tomás, H., et al. (2015) RGD Peptide-Modified Dendrimer-Entrapped Gold Nanoparticles Enable Highly Efficient and Specific Gene Delivery to Stem Cells. ACS Applied Materials & Interfaces, 7, 4833-4843. https://doi.org/10.1021/am508760w |
[34] | Janik, E., Niemcewicz, M., Ceremuga, M., Krzowski, L., Saluk-Bijak, J. and Bijak, M. (2020) Various Aspects of a Gene Editing System—CRISPR-Cas9. International Journal of Molecular Sciences, 21, Article No. 9604. https://doi.org/10.3390/ijms21249604 |
[35] | Sun, S., Xiao, J., Huo, J., Geng, Z., Ma, K., Sun, X., et al. (2018) Targeting Ectodysplasin Promotor by CRISPR/Dcas9-Effector Effectively Induces the Reprogramming of Human Bone Marrow-Derived Mesenchymal Stem Cells into Sweat Gland-Like Cells. Stem Cell Research & Therapy, 9, Article No. 8. https://doi.org/10.1186/s13287-017-0758-0 |
[36] | Cavazza, A., Moiani, A. and Mavilio, F. (2013) Mechanisms of Retroviral Integration and Mutagenesis. Human Gene Therapy, 24, 119-131. https://doi.org/10.1089/hum.2012.203 |
[37] | Park, J.S., Suryaprakash, S., Lao, Y. and Leong, K.W. (2015) Engineering Mesenchymal Stem Cells for Regenerative Medicine and Drug Delivery. Methods, 84, 3-16. https://doi.org/10.1016/j.ymeth.2015.03.002 |
[38] | Zhang, Z., Zhang, Y., Gao, F., Han, S., Cheah, K.S., Tse, H., et al. (2017) Crispr/Cas9 Genome-Editing System in Human Stem Cells: Current Status and Future Prospects. Molecular Therapy—Nucleic Acids, 9, 230-241. https://doi.org/10.1016/j.omtn.2017.09.009 |
[39] | Wong, J.K.U., Mehta, A., Vũ, T.T. and Yeo, G.C. (2023) Cellular Modifications and Biomaterial Design to Improve Mesenchymal Stem Cell Transplantation. Biomaterials Science, 11, 4752-4773. https://doi.org/10.1039/d3bm00376k |
[40] | Sarkar, D., Zhao, W., Gupta, A., Loh, W.L., Karnik, R. and Karp, J.M. (2011) Cell Surface Engineering of Mesenchymal Stem Cells. In: Vemuri, M., et al., Eds., Mesenchymal Stem Cell Assays and Applications, Humana Press, 505-523. https://doi.org/10.1007/978-1-60761-999-4_35 |
[41] | Sun, W., Liu, W., Wu, Z. and Chen, H. (2020) Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications. Macromolecular Rapid Communications, 41, Article ID: 1900430. https://doi.org/10.1002/marc.201900430 |
[42] | Hu, Q., Sun, W., Wang, J., Ruan, H., Zhang, X., Ye, Y., et al. (2018) Conjugation of Haematopoietic Stem Cells and Platelets Decorated with Anti-Pd-1 Antibodies Augments Anti-Leukaemia Efficacy. Nature Biomedical Engineering, 2, 831-840. https://doi.org/10.1038/s41551-018-0310-2 |
[43] | Sackstein, R., Merzaban, J.S., Cain, D.W., Dagia, N.M., Spencer, J.A., Lin, C.P., et al. (2008) Ex Vivo Glycan Engineering of CD44 Programs Human Multipotent Mesenchymal Stromal Cell Trafficking to Bone. Nature Medicine, 14, 181-187. https://doi.org/10.1038/nm1703 |
[44] | Ko, I.K., Kim, B., Awadallah, A., Mikulan, J., Lin, P., Letterio, J.J., et al. (2010) Targeting Improves MSC Treatment of Inflammatory Bowel Disease. Molecular Therapy, 18, 1365-1372. https://doi.org/10.1038/mt.2010.54 |
[45] | Takayama, Y., Kusamori, K., Hayashi, M., Tanabe, N., Matsuura, S., Tsujimura, M., et al. (2017) Long-Term Drug Modification to the Surface of Mesenchymal Stem Cells by the Avidin-Biotin Complex Method. Scientific Reports, 7, Article No. 16953. https://doi.org/10.1038/s41598-017-17166-8 |
[46] | Sarkar, D., Spencer, J.A., Phillips, J.A., Zhao, W., Schafer, S., Spelke, D.P., et al. (2011) Engineered Cell Homing. Blood, 118, e184-e191. https://doi.org/10.1182/blood-2010-10-311464 |
[47] | Khayambashi, P., Iyer, J., Pillai, S., Upadhyay, A., Zhang, Y. and Tran, S. (2021) Hydrogel Encapsulation of Mesenchymal Stem Cells and Their Derived Exosomes for Tissue Engineering. International Journal of Molecular Sciences, 22, Article No. 684. https://doi.org/10.3390/ijms22020684 |
[48] | Lee, J.K., Choi, I.S., Oh, T.I. and Lee, E. (2018) Cell‐Surface Engineering for Advanced Cell Therapy. Chemistry—A European Journal, 24, 15725-15743. https://doi.org/10.1002/chem.201801710 |
[49] | El-Rashidy, A.A., El Moshy, S., Radwan, I.A., Rady, D., Abbass, M.M.S., Dörfer, C.E., et al. (2021) Effect of Polymeric Matrix Stiffness on Osteogenic Differentiation of Mesenchymal Stem/Progenitor Cells: Concise Review. Polymers, 13, Article No. 2950. https://doi.org/10.3390/polym13172950 |
[50] | Thompson, M., Woods, K., Newberg, J., Oxford, J.T. and Uzer, G. (2020) Low-Intensity Vibration Restores Nuclear YAP Levels and Acute YAP Nuclear Shuttling in Mesenchymal Stem Cells Subjected to Simulated Microgravity. NPJ Microgravity, 6, Article No. 35. https://doi.org/10.1038/s41526-020-00125-5 |
[51] | Zhang, C., Zhu, H., Ren, X., Gao, B., Cheng, B., Liu, S., et al. (2021) Mechanics-Driven Nuclear Localization of YAP Can Be Reversed by N-Cadherin Ligation in Mesenchymal Stem Cells. Nature Communications, 12, Article No. 6229. https://doi.org/10.1038/s41467-021-26454-x |
[52] | Wang, T., Ouyang, H., Luo, Y., Xue, J., Wang, E., Zhang, L., et al. (2024) Rehabilitation Exercise-Driven Symbiotic Electrical Stimulation System Accelerating Bone Regeneration. Science Advances, 10, eadi6799. https://doi.org/10.1126/sciadv.adi6799 |
[53] | Bianconi, S., Oliveira, K.M.C., Klein, K., Wolf, J., Schaible, A., Schröder, K., et al. (2023) Pretreatment of Mesenchymal Stem Cells with Electrical Stimulation as a Strategy to Improve Bone Tissue Engineering Outcomes. Cells, 12, Article No. 2151. https://doi.org/10.3390/cells12172151 |
[54] | Jia, Y., Le, H., Wang, X., Zhang, J., Liu, Y., Ding, J., et al. (2023) Double-Edged Role of Mechanical Stimuli and Underlying Mechanisms in Cartilage Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 11, Article ID: 1271762. https://doi.org/10.3389/fbioe.2023.1271762 |
[55] | Langer, R. and Vacanti, J. (2016) Advances in Tissue Engineering. Journal of Pediatric Surgery, 51, 8-12. https://doi.org/10.1016/j.jpedsurg.2015.10.022 |
[56] | Liu, Y., Intini, C., Dobricic, M., O'Brien, F.J., LLorca, J. and Echeverry-Rendon, M. (2024) Collagen-Based 3D Printed Poly(Glycerol Sebacate) Composite Scaffold with Biomimicking Mechanical Properties for Enhanced Cartilage Defect Repair. International Journal of Biological Macromolecules, 280, Article ID: 135827. https://doi.org/10.1016/j.ijbiomac.2024.135827 |
[57] | Alksne, M., Kalvaityte, M., Simoliunas, E., Gendviliene, I., Barasa, P., Rinkunaite, I., et al. (2022) Dental Pulp Stem Cell-Derived Extracellular Matrix: Autologous Tool Boosting Bone Regeneration. Cytotherapy, 24, 597-607. https://doi.org/10.1016/j.jcyt.2022.02.002 |
[58] | Kim, Y.S., Chien, A.J., Guo, J.L., Smith, B.T., Watson, E., Pearce, H.A., et al. (2020) Chondrogenesis of Cocultures of Mesenchymal Stem Cells and Articular Chondrocytes in Poly(l-lysine)-Loaded Hydrogels. Journal of Controlled Release, 328, 710-721. https://doi.org/10.1016/j.jconrel.2020.09.048 |
[59] | Ghasempour, A., Dehghan, H., Mahmoudi, M. and Lavi Arab, F. (2024) Biomimetic Scaffolds Loaded with Mesenchymal Stem Cells (MSCs) or MSC-Derived Exosomes for Enhanced Wound Healing. Stem Cell Research & Therapy, 15, Article No. 406. https://doi.org/10.1186/s13287-024-04012-8 |
[60] | Moreira, F., Mizukami, A., de Souza, L.E.B., Cabral, J.M.S., da Silva, C.L., Covas, D.T., et al. (2020) Corrigendum: Successful Use of Human AB Serum to Support the Expansion of Adipose Tissue-Derived Mesenchymal Stem/Stromal Cell in a Microcarrier-Based Platform. Frontiers in Bioengineering and Biotechnology, 8, Article ID: 594582. https://doi.org/10.3389/fbioe.2020.594582 |
[61] | Confalonieri, D., Schwab, A., Walles, H. and Ehlicke, F. (2018) Advanced Therapy Medicinal Products: A Guide for Bone Marrow-Derived MSC Application in Bone and Cartilage Tissue Engineering. Tissue Engineering Part B: Reviews, 24, 155-169. https://doi.org/10.1089/ten.teb.2017.0305 |
[62] | Bunpetch, V., Zhang, Z., Zhang, X., Han, S., Zongyou, P., Wu, H., et al. (2019) Strategies for MSC Expansion and MSC-Based Microtissue for Bone Regeneration. Biomaterials, 196, 67-79. https://doi.org/10.1016/j.biomaterials.2017.11.023 |
[63] | Koga, K., Wang, B. and Kaneko, S. (2020) Current Status and Future Perspectives of Hla-Edited Induced Pluripotent Stem Cells. Inflammation and Regeneration, 40, Article No. 23. https://doi.org/10.1186/s41232-020-00132-9 |
[64] | Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007) Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell, 131, 861-872. https://doi.org/10.1016/j.cell.2007.11.019 |
[65] | Huerta, C.T., Ortiz, Y.Y., Li, Y., Ribieras, A.J., Voza, F., Le, N., et al. (2023) Novel Gene-Modified Mesenchymal Stem Cell Therapy Reverses Impaired Wound Healing in Ischemic Limbs. Annals of Surgery, 278, 383-395. https://doi.org/10.1097/sla.0000000000005949 |
[66] | Shams, F., Pourjabbar, B., Hashemi, N., Farahmandian, N., Golchin, A., Nuoroozi, G., et al. (2023) Current Progress in Engineered and Nano-Engineered Mesenchymal Stem Cells for Cancer: From Mechanisms to Therapy. Biomedicine & Pharmacotherapy, 167, Article ID: 115505. https://doi.org/10.1016/j.biopha.2023.115505 |
[67] | Nethi, S.K., Li, X., Bhatnagar, S. and Prabha, S. (2023) Enhancing Anticancer Efficacy of Chemotherapeutics Using Targeting Ligand-Functionalized Synthetic Antigen Receptor-Mesenchymal Stem Cells. Pharmaceutics, 15, Article No. 1742. https://doi.org/10.3390/pharmaceutics15061742 |
[68] | Won, Y., Patel, A.N. and Bull, D.A. (2014) Cell Surface Engineering to Enhance Mesenchymal Stem Cell Migration toward an SDF-1 Gradient. Biomaterials, 35, 5627-5635. https://doi.org/10.1016/j.biomaterials.2014.03.070 |