|
Pure Mathematics 2025
模糊赋范Riesz空间上序列基本性质的研究
|
Abstract:
模糊赋范Riesz空间是一个既具有Riesz空间的序结构又具有模糊赋范空间的模糊范数结构的线性空间,它将Riesz空间(也称为向量格或向量格子)与模糊赋范空间的概念结合起来。在模糊赋范Riesz空间中,研究序列的收敛性、有界性和完备性是十分重要的。本文通过对序列性质的研究,给出了模糊赋范Riesz空间上模糊序闭集的概念,讨论了模糊Banach格中模糊范收敛和一致收敛的关系,并用序列的模糊范收敛和完备性来讨论模糊赋范Riesz空间上的相关性质,最后讨论了模糊Banach格中模糊序连续范数的充要条件,丰富和推广了已有结论。
A fuzzy normed Riesz space is a linear space that has both the order structure of a Riesz space and the fuzzy norm structure of a fuzzy normed space, which combines the concepts of a Riesz space (also known as a vector lattice or a vector lattice module) and a fuzzy endowed Riesz space. In a fuzzy normed Riesz space, the study of convergence, boundedness, and completeness of sequences is very important. In this paper, by studying the properties of sequences, the concept of a fuzzy order closed set in a fuzzy normed Riesz space is given, followed by a discussion of the relationship between fuzzy norm convergence and uniform convergence in a fuzzy Banach lattice and the use of sequence fuzzy norm convergence and completeness to discuss the differences and connections between a fuzzy normed Riesz space and a fuzzy Banach lattice, finally, the sufficient and necessary conditions for the fuzzy order continuous norm in the fuzzy Banach lattice are discussed, enriching and extending existing results.
[1] | Zadeh, L.A. (1971) Similarity Relations and Fuzzy Orderings. Information Sciences, 3, 177-200. https://doi.org/10.1016/s0020-0255(71)80005-1 |
[2] | Katsaras, A.K. (1981) Fuzzy Topological Vector Spaces I. Fuzzy Sets and Systems, 6, 85-95. https://doi.org/10.1016/0165-0114(81)90082-8 |
[3] | Venugopalan, P. (1992) Fuzzy Ordered Sets. Fuzzy Sets and Systems, 46, 221-226. https://doi.org/10.1016/0165-0114(92)90134-p |
[4] | Felbin, C. (1992) Finite Dimensional Fuzzy Normed Linear Space. Fuzzy Sets and Systems, 48, 239-248. https://doi.org/10.1016/0165-0114(92)90338-5 |
[5] | Beg, I. and Islam, M.U. (1995) Fuzzy Ordered Linear Spaces. Fuzzy Mathematics, 3, 659-670. |
[6] | Bag, T. and Samanta, S.K. (2003) Finite Dimensional Fuzzy Normed Linear Spaces. Fuzzy Mathematics, 11, 687-705. |
[7] | Park, C., Movahednia, E., Mosadegh, S.M.S.M., et al. (2018) Riesz Fuzzy Normed Spaces and Stability of a Lattice Preserving Functional Equation. Journal of Computational Analysis and Applications, 24, 569-579. |
[8] | Zaanen, A.C. (2012) Introduction to Operator Theory in Riesz Spaces. Springer Science & Business Media, 83-117. |
[9] | 郑富丽, 程娜, 刘艳丽. 模糊赋范Riesz空间上模糊Riesz-Fischer性的基本性质[J]. 商洛学院学报, 2024, 38(6): 23-27. |
[10] | 赵家锐. 模糊赋范Riesz空间的性质[D]: [硕士学位论文]. 成都: 西华大学, 2022. |