全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

矩阵加权网络下基于自适应控制和动态事件触发策略的多智能体系统一致性
Consensus of Multi-Agent Systems Based on Adaptive Control and Dynamic Event-Triggered Strategies under Matrix-Weighted Networks

DOI: 10.12677/pm.2025.151035, PP. 327-341

Keywords: 一致性,多智能体系统,自适应控制,事件触发策略,矩阵加权网络
Consensus
, Multi-Agent Systems, Adaptive Control, Event-Triggered Strategy, Matrix-Weighted Networks

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文采用自适应控制和事件触发策略研究了矩阵加权网络下多智能体系统的一致性问题。不同于传统的纯量加权网络,智能体及其邻居之间的通信由正定或半正定的矩阵刻画。利用矩阵权值将更有利于反映智能体之间的逻辑依赖关系。结合动态事件触发策略设计了两种不同的自适应控制协议,即基于边的自适应协议和基于节点的自适应协议,这些控制协议具有灵活调整控制输入的性能。给出了实现一致性的充分条件,并分析了芝诺行为的排除。最后,通过数值仿真验证了理论分析的有效性。
This paper endeavors to investigate the consensus problem for multi-agent systems under matrix-weighted networks by employing adaptive control and event-triggered strategies. Different from conventional scalar-weighted networks, the interconnections among agents and their neighbors are characterized by positive definite or positive semi-definite matrices. The utilization of matrix weights is more beneficial to reflect the logical inter-dependency among agents. Two different adaptive control protocols, namely edge-based adaptive protocol and node-based adaptive protocol, are designed in combination with dynamic event-triggered strategies. These protocols can facilitate the flexible manipulation of control inputs. Sufficient conditions for achieving consensus are provided and the exclusion of Zeno behavior is analyzed. Finally, the validity of the theoretical analysis is verified through numerical simulation.

References

[1]  Pack, D.J., DeLima, P., Toussaint, G.J. and York, G. (2009) Cooperative Control of UAVs for Localization of Intermittently Emitting Mobile Targets. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39, 959-970.
https://doi.org/10.1109/tsmcb.2008.2010865
[2]  He, S., Shin, H., Xu, S. and Tsourdos, A. (2020) Distributed Estimation over a Low-Cost Sensor Network: A Review of State-of-the-Art. Information Fusion, 54, 21-43.
https://doi.org/10.1016/j.inffus.2019.06.026
[3]  Oh, K., Park, M. and Ahn, H. (2015) A Survey of Multi-Agent Formation Control. Automatica, 53, 424-440.
https://doi.org/10.1016/j.automatica.2014.10.022
[4]  Qin, J., Ma, Q., Shi, Y. and Wang, L. (2017) Recent Advances in Consensus of Multi-Agent Systems: A Brief Survey. IEEE Transactions on Industrial Electronics, 64, 4972-4983.
https://doi.org/10.1109/tie.2016.2636810
[5]  Olfati-Saber, R. and Murray, R.M. (2004) Consensus Problems in Networks of Agents with Switching Topology and Time-Delays. IEEE Transactions on Automatic Control, 49, 1520-1533.
https://doi.org/10.1109/tac.2004.834113
[6]  He, S., Wang, H. and Yu, W. (2022) Distributed Fast Finite-Time Tracking Consensus of Multi-Agent Systems with a Dynamic Leader. IEEE Transactions on Circuits and Systems II: Express Briefs, 69, 2176-2180.
https://doi.org/10.1109/tcsii.2021.3125700
[7]  Miao, S., Su, H. and Chen, S. (2024) Matrix-Weighted Consensus of Second-Order Discrete-Time Multiagent Systems. IEEE Transactions on Neural Networks and Learning Systems, 35, 3539-3548.
https://doi.org/10.1109/tnnls.2022.3194010
[8]  Miao, S., Su, H. and Liu, B. (2023) Controllability of Discrete-Time Multi-Agent Systems with Matrix-Weighted Networks. IEEE Transactions on Circuits and Systems II: Express Briefs, 70, 2984-2988.
https://doi.org/10.1109/tcsii.2023.3253515
[9]  Trinh, M.H., Van Nguyen, C., Lim, Y. and Ahn, H. (2018) Matrix-Weighted Consensus and Its Applications. Automatica, 89, 415-419.
https://doi.org/10.1016/j.automatica.2017.12.024
[10]  Tran, Q.V., Trinh, M.H. and Ahn, H. (2021) Discrete-Time Matrix-Weighted Consensus. IEEE Transactions on Control of Network Systems, 8, 1568-1578.
https://doi.org/10.1109/tcns.2021.3068367
[11]  Pan, L., Shao, H., Mesbahi, M., Xi, Y. and Li, D. (2021) Consensus on Matrix-Weighted Switching Networks. IEEE Transactions on Automatic Control, 66, 5990-5996.
https://doi.org/10.1109/tac.2021.3063115
[12]  Pan, L., Shao, H., Mesbahi, M., Xi, Y. and Li, D. (2019) Bipartite Consensus on Matrix-Valued Weighted Networks. IEEE Transactions on Circuits and Systems II: Express Briefs, 66, 1441-1445.
https://doi.org/10.1109/tcsii.2018.2884483
[13]  Ge, X., Han, Q., Zhang, X. and Ding, D. (2021) Dynamic Event-Triggered Control and Estimation: A Survey. International Journal of Automation and Computing, 18, 857-886.
https://doi.org/10.1007/s11633-021-1306-z
[14]  Li, M., Long, Y., Li, T. and Chen, C.L.P. (2022) Consensus of Linear Multi-Agent Systems by Distributed Event-Triggered Strategy with Designable Minimum Inter-Event Time. Information Sciences, 609, 644-659.
https://doi.org/10.1016/j.ins.2022.07.107
[15]  Liu, K. and Ji, Z. (2024) Event-triggered Average Consensus on Matrix-Weighted Networks. IEEE Transactions on Circuits and Systems II: Express Briefs, 71, 677-681.
https://doi.org/10.1109/tcsii.2023.3289259
[16]  Qian, Y., Liu, L. and Feng, G. (2020) Distributed Event-Triggered Adaptive Control for Consensus of Linear Multi-Agent Systems with External Disturbances. IEEE Transactions on Cybernetics, 50, 2197-2208.
https://doi.org/10.1109/tcyb.2018.2881484
[17]  Ruan, X., Feng, J., Xu, C. and Wang, J. (2020) Observer-based Dynamic Event-Triggered Strategies for Leader-Following Consensus of Multi-Agent Systems with Disturbances. IEEE Transactions on Network Science and Engineering, 7, 3148-3158.
https://doi.org/10.1109/tnse.2020.3017493
[18]  Liu, K. and Ji, Z. (2022) Dynamic Event-Triggered Consensus of General Linear Multi-Agent Systems with Adaptive Strategy. IEEE Transactions on Circuits and Systems II: Express Briefs, 69, 3440-3444.
https://doi.org/10.1109/tcsii.2022.3144280
[19]  Li, Z. and Duan, Z. (2017) Cooperative Control of Multi-Agent Systems: A Consensus Region Approach. Taylor & Francis Groups.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133