|
Pure Mathematics 2025
一类泊松流形的同调
|
Abstract:
本文旨在探讨一类特定的泊松流形——Iwasawa流形和幂零流形的同调群。通过引入全纯泊松流形的概念,运用Koszul-Brylinski同调和全纯Koszul-Brylinski同调的工具,我们计算了这些流形的同调群。结果表明,幂零流形在某些条件下具有可预见的同调结构,这为理解泊松几何中的深层次联系提供了新的视角。
This paper aims to explore the homology groups of a specific class of Poisson manifolds, namely Iwasawa manifolds and nilpotent manifolds. By introducing the concept of holomorphic Poisson manifolds and using tools such as Koszul-Brylinski homology and holomorphic Koszul-Brylinski homology, we compute the homology groups of these manifolds. The results show that nilpotent manifolds possess predictable homological structures under certain conditions, offering new perspectives for understanding the deep connections in Poisson geometry.
[1] | Kontsevich, M. (2003) Deformation Quantization of Poisson Manifolds. Letters in Mathematical Physics, 66, 157-216. https://doi.org/10.1023/b:math.0000027508.00421.bf |
[2] | Hitchin, N. (2012) Deformations of Holomorphic Poisson Manifolds. Moscow Mathematical Journal, 12, 567-591. https://doi.org/10.17323/1609-4514-2012-12-3-567-591 |
[3] | Brylinski, J.L. and Zuckerman, G. (1999) The Outer Derivation of a Complex Poisson Manifold. Journal für die Reine und Angewandte Mathematik (Crelles Journal), 1999, 181-189. https://doi.org/10.1515/crll.1999.506.181 |
[4] | Hitchin, N. (2011) Deformations of Holomorphic Poisson Manifolds. |
[5] | Chen, Z., Fino, A. and Poon, Y. (2016) Holomorphic Poisson Structure and Its Cohomology on Nilmanifolds. Differential Geometry and Its Applications, 44, 144-160. https://doi.org/10.1016/j.difgeo.2015.11.006 |
[6] | Bondal, A.I. (1993) Non-Commutative Deformations and Poisson Brackets on Projective Spaces. Preprint of Max-Planck-Institut fur Mathematik. MPI/93-67. |
[7] | Polishchuk, A. (1997) Algebraic Geometry of Poisson Brackets. Journal of Mathematical Sciences, 84, 1413-1444. https://doi.org/10.1007/bf02399197 |
[8] | Pym, B. (2017) Constructions and Classifications of Projective Poisson Varieties. Letters in Mathematical Physics, 108, 573-632. https://doi.org/10.1007/s11005-017-0984-5 |
[9] | Polishchuk, A. (1997) Algebraic Geometry of Poisson Brackets. Journal of Mathematical Sciences, 84, 1413-1444. https://doi.org/10.1007/bf02399197 |
[10] | Pym, B. (2017) Constructions and Classifications of Projective Poisson Varieties. Letters in Mathematical Physics, 108, 573-632. https://doi.org/10.1007/s11005-017-0984-5 |
[11] | Evens, S., Lu, J.-H. and Weinstein, A. (1999) Transverse Measures, the Modular Class and a Cohomology Pairing for Lie Algebroids. The Quarterly Journal of Mathematics, 50, 417-436. https://doi.org/10.1093/qjmath/50.200.417 |
[12] | Stiénon, M. (2010) Holomorphic Koszul-Brylinski Homology. International Mathematics Research Notices, 2010, 553-571. https://doi.org/10.1093/imrn/rnq084 |
[13] | Fiorenza, D. and Manetti, M. (2012) Formality of Koszul Brackets and Deformations of Holomorphic Poisson Manifolds. Homology, Homotopy and Applications, 14, 63-75. https://doi.org/10.4310/hha.2012.v14.n2.a4 |
[14] | Ran, Z. (2017) Deformations of Holomorphic Pseudo-Symplectic Poisson Manifolds. Advances in Mathematics, 304, 1156-1175. https://doi.org/10.1016/j.aim.2016.09.016 |
[15] | Hong, W. and Xu, P. (2011) Poisson Cohomology of Del Pezzo Surfaces. Journal of Algebra, 336, 378-390. https://doi.org/10.1016/j.jalgebra.2010.12.017 |
[16] | Hong, W. (2019) Poisson Cohomology of Holomorphic Toric Poisson Manifolds. I. Journal of Algebra, 527, 147-181. https://doi.org/10.1016/j.jalgebra.2019.03.001 |
[17] | Chen, Z., Fino, A. and Poon, Y. (2016) Holomorphic Poisson Structure and Its Cohomology on Nilmanifolds. Differential Geometry and Its Applications, 44, 144-160. https://doi.org/10.1016/j.difgeo.2015.11.006 |
[18] | Chen, Z., Grandini, D. and Poon, Y. (2015) Holomorphic Poisson Cohomology. Complex Manifolds, 2, 34-52. https://doi.org/10.1515/coma-2015-0005 |
[19] | Poon, Y.S. and Simanyi, J. (2017) A Hodge-Type Decomposition of Holomorphic Poisson Cohomology on Nilmanifolds. Complex Manifolds, 4, 137-154. https://doi.org/10.1515/coma-2017-0009 |
[20] | Weinstein, A. (1997) The Modular Automorphism Group of a Poisson Manifold. Journal of Geometry and Physics, 23, 379-394. https://doi.org/10.1016/s0393-0440(97)80011-3 |
[21] | Nakamura, I. (1975) Complex Parallelisable Manifolds and Their Small Deformations. Journal of Differential Geometry, 10, 85-112. https://doi.org/10.4310/jdg/1214432677 |
[22] | Benson, C. and Gordon, C.S. (1988) Kähler and Symplectic Structures on Nilmanifolds. Topology, 27, 513-518. https://doi.org/10.1016/0040-9383(88)90029-8 |
[23] | Koszul, J.L. (1985) Crochet de Schouten-Nijenhuis et cohomologie. Astérisque, 137, 257-271. |
[24] | Brylinski, J. (1988) A Differential Complex for Poisson Manifolds. Journal of Differential Geometry, 28, 93-114. https://doi.org/10.4310/jdg/1214442161 |
[25] | Stiénon, M. (2010) Holomorphic Koszul-Brylinski Homology. International Mathematics Research Notices, 2011, 553-571. https://doi.org/10.1093/imrn/rnq084 |
[26] | Chen, X., Chen, Y., Yang, S. and Yang, X. (2022) Holomorphic Koszul-Brylinski Homologies of Poisson Blow-Ups. arXiv: 2202.09764. |
[27] | Chen, Y. (2022) Formality of the Dolbeault Complex and Deformations of Holomorphic Poisson Manifolds. Journal of Geometry and Physics, 182, Article ID: 104679. https://doi.org/10.1016/j.geomphys.2022.104679 |