全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于两阶段多变点估计对动力煤价格的实证分析
Empirical Analysis of Thermal Coal Price Based on Two-Stage Multiple Change-Point Estimation

DOI: 10.12677/pm.2025.151033, PP. 302-310

Keywords: 变量选择,多变点,线性回归模型,动力煤
Variable Selection
, Multiple Change-Point, Linear Regression Model, Thermal Coal

Full-Text   Cite this paper   Add to My Lib

Abstract:

将变量选择技术应用到变点估计中可以同时得到多变点数量和位置的估计结果,大大降低了计算复杂度。文章首先介绍了两阶段多变点检测与估计方法的基本概念,以2021年12月22日至2024年11月6日的秦皇岛动力煤价格作为研究对象,并对其中的训练集建立线性回归模型。其次,利用此变点估计方法估计线性回归模型中系数的多变点,根据变点个数和位置的估计结果建立更精准的分段线性回归模型,并运用最后一个子段的线性回归模型对测试集进行短期预测。实证结果表明,分段线性回归模型能更精准地刻画和预测秦皇岛动力煤价格的走势。
Applying variable selection techniques to multiple change-point estimation can yield estimates of the number and location of multiple change-point at the same time, significantly reducing computational complexity. The article first introduces the basic concepts of two-stage multiple change-point detection and estimation methods, takes Qinhuangdao thermal coal prices from December 22, 2021 to November 6, 2024 as the research object, and builds a linear regression model for the training set therein. Secondly, this change-point estimation method is utilized to estimate the multiple change-point of the coefficients in the linear regression model, establish more accurate segmented linear regression modeling based on the estimation of the number and location of change-point, and apply the linear regression model of the last subsection to make short-term predictions about the test set. The empirical results show that the segmented linear regression model can more accurately portray and predict the trend of Qinhuangdao thermal coal prices.

References

[1]  Page, E.S. (1954) Continuous Inspection Schemes. Biometrika, 41, 100-115.
https://doi.org/10.1093/biomet/41.1-2.100
[2]  Mo, C., Ruan, Y., He, J., Jin, J., Liu, P. and Sun, G. (2018) Frequency Analysis of Precipitation Extremes under Climate Change. International Journal of Climatology, 39, 1373-1387.
https://doi.org/10.1002/joc.5887
[3]  Pepelyshev, A. and Polunchenko, A.S. (2017) Real-Time Financial Surveillance via Quickest Change-Point Detection Methods. Statistics and Its Interface, 10, 93-106.
https://doi.org/10.4310/sii.2017.v10.n1.a9
[4]  李小兰. 超声散斑运动追踪中的峰值跳变点分析研究[D]: [硕士学位论文]. 成都: 西南石油大学, 2020.
[5]  Jin, B., Shi, X. and Wu, Y. (2011) A Novel and Fast Methodology for Simultaneous Multiple Structural Break Estimation and Variable Selection for Nonstationary Time Series Models. Statistics and Computing, 23, 221-231.
https://doi.org/10.1007/s11222-011-9304-6
[6]  Jin, B., Wu, Y. and Shi, X. (2016) Consistent Two‐Stage Multiple Change‐Point Detection in Linear Models. Canadian Journal of Statistics, 44, 161-179.
https://doi.org/10.1002/cjs.11282
[7]  Sun, X. and Wu, Y. (2020) Simultaneous Multiple Change Points Estimation in Generalized Linear Models. In: Fan, J.Q. and Pan, J.X., Eds., Contemporary Experimental Design, Multivariate Analysis and Data Mining: Festschrift in Honour of Professor Kai-Tai Fang, Springer International Publishing, 341-356.
https://doi.org/10.1007/978-3-030-46161-4_22
[8]  吕丽, 金百锁. 线性模型中多变点的置信区间估计[J]. 系统科学与数学, 2021, 41(8): 2310-2326.
[9]  唐静, 王艳洁, 郭一达, 等. 环渤海动力煤价格预测及用煤企业经营策略研究——基于LSTM和概率区间评估的分析[J]. 价格理论与实践, 2024(2): 42-46+125.
[10]  赵修茗, 张甜, 邹绍辉. 动力煤期货价格波动对我国煤炭经济影响研究[J]. 中国矿业, 2020, 29(1): 34-40.
[11]  云小鹏. 动力煤市场波动特征研究[J]. 煤炭工程, 2018, 50(6): 131-134.
[12]  刘威, 陈文昊, 姜宇翔, 等. 基于多元线性回归模型对煤炭问题的研究[J]. 智慧中国, 2020(9): 83-84.
[13]  Zhang, C. (2010) Nearly Unbiased Variable Selection under Minimax Concave Penalty. The Annals of Statistics, 38, 894-942.
https://doi.org/10.1214/09-aos729
[14]  Fan, J. and Li, R. (2001) Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties. Journal of the American Statistical Association, 96, 1348-1360.
https://doi.org/10.1198/016214501753382273
[15]  Csorgo, M. and Horváth, L. (1997) Limit Theorems in Change-Point Analysis. Wiley, 218-219.
[16]  黄梦婷, 朱家明. 基于逐步回归法对中国煤炭价格影响因素的实证分析[J]. 哈尔滨师范大学自然科学学报, 2021, 37(2): 28-33.
[17]  向钰鑫. 基于机器学习的煤炭价格预测模型研究[D]: [硕士学位论文]. 重庆: 重庆理工大学理学院, 2023.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133