全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

有限维空间中逆变分不等式的性质及应用
The Properties and Applications of the Inverse Variational Inequalities in Finite-Dimensional Space

DOI: 10.12677/pm.2025.151030, PP. 274-281

Keywords: 逆变分不等式,压缩映像原理,存在唯一性,交通领域
Inverse Variational Inequality
, Compression Mapping Principle, Existence and Uniqueness, Field of Transportation

Full-Text   Cite this paper   Add to My Lib

Abstract:

逆变分不等式在经济、管理和交通网络等领域都有着重要的应用。本文运用压缩映像原理证明了Lipschitz连续和强单调条件下有限维空间中逆变分不等式解的存在唯一性,并且以春节前后为疏散人流对不同的日子确定不同的合理票价问题为例,给出了逆变分不等式在交通领域的应用。
The inverse variational inequality has important applications in fields such as economics, management, and transportation networks. In this paper, the existence and uniqueness of the solution to the inverse variational inequality in a finite-dimensional space under the conditions of Lipschitz continuity and strong monotonicity are proved using the compression mapping principle. An example is given to illustrate the application of the inverse variational inequality in the field of transportation, where the reasonable ticket prices for dispersing passenger flow during the Spring Festival period are determined for different days based on the inverse variational inequality.

References

[1]  Hartman, P. and Stampacchia, G. (1966) On Some Non-Linear Elliptic Differential-Functional Equations. Acta Mathematica, 115, 271-310.
https://doi.org/10.1007/bf02392210
[2]  张石生. 变分不等式及其相关问题[M]. 重庆: 重庆科学技术出版社, 2008.
[3]  张石生. 变分不等式和互补问题理论及应用[M]. 上海: 上海科技文献出版社, 2001.
[4]  韩渭敏, 程晓良. 变分不等式简介: 基本理论、数值分析及应用[M]. 北京: 高等教育出版社, 2007.
[5]  He, B.S. and Liu, H.X. (2006) Inverse Variational Inequalities in the Economic Field: Applications and Algorithms. Science Paper Online, 1-14.
[6]  He, B.S. and Liu, H.X. (2006) PPA-Base Methods for Monotone Inverse Variational Inequalities. Science Paper Online, 1-16.
[7]  He, B., He, X. and Liu, H.X. (2010) Solving a Class of Constrained “Black-Box” Inverse Variational Inequalities. European Journal of Operational Research, 204, 391-401.
https://doi.org/10.1016/j.ejor.2009.07.006
[8]  Yang, J. (2008) Dynamic Power Price Problem: An Inverse Variational Inequality Approach. Journal of Industrial & Management Optimization, 4, 673-684.
https://doi.org/10.3934/jimo.2008.4.673
[9]  Barbagallo, A. and Mauro, P. (2014) Inverse Variational Inequality Approach and Applications. Numerical Functional Analysis and Optimization, 35, 851-867.
https://doi.org/10.1080/01630563.2014.895751
[10]  He, S.N. and Xu, H.K. (2009) Variational Inequalities Governed by Boundedly Lipschitz and Strongly Monotone Operators. Fixed Point Theory, 10, 245-258.
[11]  He, B. (1999) Inexact Implicit Methods for Monotone General Variational Inequalities. Mathematical Programming, 86, 199-217.
https://doi.org/10.1007/s101070050086

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133