全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Enhancing Transparency and Efficiency in Auditing and Regulatory Compliance with Disruptive Technologies

DOI: 10.4236/tel.2025.151013, PP. 214-233

Keywords: Blockchain Technology, Artificial Intelligence (AI), Regulatory Compliance, Auditing Processes, Ethical Considerations, Cybersecurity

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper explores the transformative impact of digital tools on financial reporting, focusing on how advancements in technologies such as blockchain, artificial intelligence (AI), and data analytics have revolutionized the way financial data is managed, reported, and audited. These tools enhance data integration, accuracy, and transparency, while streamlining the auditing process through automation and real-time analysis. The paper also addresses the growing importance of data visualization for better stakeholder engagement and predictive insights. Alongside the benefits, the challenges of adopting these technologies—including cybersecurity risks, skill gaps, and ethical concerns—are discussed. Looking forward, the paper suggests future directions such as wider blockchain adoption, AI-driven forecasting, and the development of advanced cybersecurity measures. Ultimately, the integration of digital tools promises a more efficient, transparent, and forward-looking financial reporting landscape, but it requires organizations to stay adaptable and proactive in addressing emerging risks and compliance requirements.

References

[1]  Ahmad, A., Saad, M., Njilla, L., Kamhoua, C., Bassiouni, M., & Mohaisen, A. (2019). Blocktrail: A Scalable Multichain Solution for Blockchain-Based Audit Trails. In ICC 2019-2019 IEEE International Conference on Communications (ICC) (pp. 1-6). IEEE.
https://doi.org/10.1109/icc.2019.8761448
[2]  Andrienko, G., Andrienko, N., Drucker, S., Fekete, J.-D., Fisher, D., Idreos, S., & Sharaf, M. (2020). Big Data Visualization and Analytics: Future Research Challenges and Emerging Applications. In ACM SIGMOD Blog (3rd Int. Workshop on Big Data Visual Exploration and Analytics EDBT/ICDT 2020) (CEUR Workshop Proceedings; Vol. 2578).
http://wp.sigmod.org/?p=3037
[3]  Antonopoulou, H., Mamalougou, V., & Theodorakopoulos, L. (2022). The Role of Economic Policy Uncertainty in Predicting Stock Return Volatility in the Banking Industry: A Big Data Analysis. Emerging Science Journal, 6, 569-577.
https://doi.org/10.28991/esj-2022-06-03-011
[4]  Antonopoulou, H., Theodorakopoulos, L., Halkiopoulos, C., & Mamalougkou, V. (2023). Utilizing Machine Learning to Reassess the Predictability of Bank Stocks. Emerging Science Journal, 7, 724-732.
https://doi.org/10.28991/esj-2023-07-03-04
[5]  Arifin, S. R. M. (2018). Ethical Considerations in Qualitative Study. International Journal of Care Scholars, 1, 30-33.
https://doi.org/10.31436/ijcs.v1i2.82
[6]  Arputhamary, B., & Arockiam, L. (2015). Data Integration in Big Data Environment. Bonfring International Journal of Data Mining, 5, 1-5.
https://doi.org/10.9756/bijdm.8001
[7]  Böhm, T. (2012). Accuracy Improvement of Condition Diagnosis of Railway Switches via External Data Integration. In Structural Health Monitoring (pp. 1550-1558). Deutsche Gesellschaft für Zerstörungsfreie Prüfung.
[8]  Botelho, A. (2013). The Impact of Regulatory Compliance Behavior on Hazardous Waste Generation in European Private Healthcare Facilities. Waste Management & Research: The Journal for a Sustainable Circular Economy, 31, 996-1001.
https://doi.org/10.1177/0734242x13495102
[9]  Cappelli, P. H. (2015). Skill Gaps, Skill Shortages, and Skill Mismatches: Evidence and Arguments for the United States. ILR Review, 68, 251-290.
https://doi.org/10.1177/0019793914564961
[10]  Carroll, L. N., Au, A. P., Detwiler, L. T., Fu, T., Painter, I. S., & Abernethy, N. F. (2014). Visualization and Analytics Tools for Infectious Disease Epidemiology: A Systematic Review. Journal of Biomedical Informatics, 51, 287-298.
https://doi.org/10.1016/j.jbi.2014.04.006
[11]  Chen, J. J., & Zhang, H. (2010). The Impact of Regulatory Enforcement and Audit upon IFRS Compliance—Evidence from China. European Accounting Review, 19, 665-692.
https://doi.org/10.1080/09638180903384684
[12]  Chun, H. M., & Rhee, C. S. (2015). Analyst Coverage and Audit Efforts: Empirical Approach to Audit Hours. Journal of Applied Business Research (JABR), 31, 795–808.
https://doi.org/10.19030/jabr.v31i3.9203
[13]  Dong, X. L., & Rekatsinas, T. (2018). Data Integration and Machine Learning: A Natural Synergy. In Proceedings of the 2018 International Conference on Management of Data (pp. 1645-1650). ACM.
https://doi.org/10.1145/3183713.3197387
[14]  Habibzadeh, H., Nussbaum, B. H., Anjomshoa, F., Kantarci, B., & Soyata, T. (2019). A Survey on Cybersecurity, Data Privacy, and Policy Issues in Cyber-Physical System Deployments in Smart Cities. Sustainable Cities and Society, 50, Article ID: 101660.
https://doi.org/10.1016/j.scs.2019.101660
[15]  Halkiopoulos, C., Igoumenakis, G., & Theodoropoulou, A. (2023). Evaluation of Hotel Services Utilizing Digital Marketing Strategies in Less Developed Countries within the Hospitality Industry. In International Conference of the International As-sociation of Cultural and Digital Tourism (pp. 323-346). Springer Nature.
https://doi.org/10.1007/978-3-031-54338-8_18
[16]  Halkiopoulos, C., Papadopoulos, A., Stamatiou, Y. C., Theodorakopoulos, L., & Vlachos, V. (2024). A Digital Service for Citizens: Multi-Parameter Optimization Model for Cost-Benefit Analysis of Cybercrime and Cyberdefense. Emerging Science Journal, 8, 1320-1344.
https://doi.org/10.28991/esj-2024-08-04-06
[17]  Handoko, B. L., Mulyawan, A. N., Tanuwijaya, J., & Tanciady, F. (2020). Big Data in Auditing for the Future of Data Driven Fraud Detection. International Journal of Innovative Technology and Exploring Engineering, 9, 2902-2907.
https://doi.org/10.35940/ijitee.b7568.019320
[18]  Herbert, A., Anshu, Gregory, M., Gupta, S., & Singh, N. (2009). Invasive Cervical Cancer Audit: A Relative Increase in Interval Cancers While Coverage Increased and Incidence Declined. BJOG: An International Journal of Obstetrics & Gynaecology, 116, 845-853.
https://doi.org/10.1111/j.1471-0528.2008.01990.x
[19]  Igoumenakis, G., Theodoropoulou, A., & Halkiopoulos, C. (2023). Tourism and Developing Countries. Conditions and Prospects for Tourism Development. In V. Katsoni, & G. Cassar (Eds.), International Conference of the International Association of Cultural and Digital Tourism (pp. 721-748). Springer Nature.
https://doi.org/10.1007/978-3-031-54338-8_43
[20]  Javid, T., Faris, M., Beenish, H., & Fahad, M. (2020). Cybersecurity and Data Privacy in the Cloudlet for Preliminary Healthcare Big Data Analytics. In 2020 International Conference on Computing and Information Technology (ICCIT-1441) (pp. 1-4). IEEE.
https://doi.org/10.1109/iccit-144147971.2020.9213712
[21]  Jayathilake, N. W. D., & Seneviratne, S. M. C. (2022). The Investigation of the Awareness of Implementing Blockchain Technology in Audit Trails among the Auditors. Journal of Accounting Research, Organization and Economics, 5, 109-123.
https://doi.org/10.24815/jaroe.v5i2.26587
[22]  Karras, A., Giannaros, A., Theodorakopoulos, L., Krimpas, G. A., Kalogeratos, G., Karras, C. et al. (2023). FLIBD: A Federated Learning-Based IoT Big Data Management Approach for Privacy-Preserving over Apache Spark with Fate. Electronics, 12, Article No. 4633.
https://doi.org/10.3390/electronics12224633
[23]  Karras, C., Karras, A., Theodorakopoulos, L., Giannoukou, I., & Sioutas, S. (2022). Expanding Queries with Maximum Likelihood Estimators and Language Models. In K. Daimi, & A. Al Sadoon (Eds.), The International Conference on Innovations in Computing Research (pp. 201-213). Springer International Publishing.
https://doi.org/10.1007/978-3-031-14054-9_20
[24]  Karras, C., Theodorakopoulos, L., Karras, A., & Krimpas, G. A. (2024). Efficient Algorithms for Range Mode Queries in the Big Data Era. Information, 15, Article No. 450.
https://doi.org/10.3390/info15080450
[25]  Kokina, J., Pachamanova, D., & Corbett, A. (2017). The Role of Data Visualization and Analytics in Performance Management: Guiding Entrepreneurial Growth Decisions. Journal of Accounting Education, 38, 50-62.
https://doi.org/10.1016/j.jaccedu.2016.12.005
[26]  Kwon, J., & Eric, J. M. (2011). The Impact of Security Practices on Regulatory Compliance and Security Performance. In Thirty Second International Conference on Information Systems ICIS 2011 Proceedings (Vol. 3, pp. 2204-2212).
[27]  McDaniel, L. S. (1990). The Effects of Time Pressure and Audit Program Structure on Audit Performance. Journal of Accounting Research, 28, 267.
https://doi.org/10.2307/2491150
[28]  McGuinness, S., & Ortiz, L. (2016). Skill Gaps in the Workplace: Measurement, Determinants and Impacts. Industrial Relations Journal, 47, 253-278.
https://doi.org/10.1111/irj.12136
[29]  Mehrfard, H., & Hamou-Lhadj, A. (2011). The Impact of Regulatory Compliance on Agile Software Processes with a Focus on the FDA Guidelines for Medical Device Software. International Journal of Information System Modeling and Design, 2, 67-81.
https://doi.org/10.4018/jismd.2011040104
[30]  Morgan, G., & Soin, K. (2018). Regulatory Compliance. In Regulation and Organizations (pp. 166-190). Routledge.
[31]  Munhall, P. L. (1988). Ethical Considerations in Qualitative Research. Western Journal of Nursing Research, 10, 150-162.
https://doi.org/10.1177/019394598801000204
[32]  Murrill, B. J., Liu, E. C., & Thompson, R. M. (2012). Smart Meter Data: Privacy and Cybersecurity. Congressional Research Service, Library of Congress.
[33]  Neovius, M., Karlsson, J., Westerlund, M., & Pulkkis, G. (2018). Providing Tamper-Resistant Audit Trails for Cloud Forensics with Distributed Ledger Based Solutions. In The Ninth International Conference on Cloud Computing (pp. 19-24). IARIA.
[34]  Oguejiofor, B. B., Omotosho, A., Abioye, K. M. et al. (2023). A Review on Data-Driven Regulatory Compliance in Nigeria. International Journal of Applied Research in Social Sciences, 5, 231-243.
https://doi.org/10.51594/ijarss.v5i8.571
[35]  Olayinka, O., & Win, T. (2022). Cybersecurity and Data Privacy in the Digital Age: Two Case Examples. In Handbook of Research on Digital Transformation, Industry Use Cases, and the Impact of Disruptive Technologies (pp. 117-131). IGI Global.
https://doi.org/10.4018/978-1-7998-7712-7.ch007
[36]  Osterman, P., & Weaver, A. (2014). Skills and Skill Gaps in Manufacturing. In R. M. Locke, & R. L. Wellhausen (Eds.), Production in the Innovation Economy (pp. 17-50). The MIT Press.
https://doi.org/10.7551/mitpress/9780262019927.003.0002
[37]  Pietilä, A., Nurmi, S., Halkoaho, A., & Kyngäs, H. (2020). Qualitative Research: Ethical Considerations. In H. Kyngäs, K. Mikkonen, & M. Kääriäinen (Eds.), The Application of Content Analysis in Nursing Science Research (pp. 49-69). Springer International Publishing.
https://doi.org/10.1007/978-3-030-30199-6_6
[38]  Regueiro, C., Seco, I., Gutiérrez-Agüero, I., Urquizu, B., & Mansell, J. (2021). A Blockchain-Based Audit Trail Mechanism: Design and Implementation. Algorithms, 14, Article No. 341.
https://doi.org/10.3390/a14120341
[39]  Restuccia, D., & Taska, B. (2018). Different Skills, Different Gaps: Measuring and Closing the Skills Gap. In C. Larsen et al. (Eds.), Developing Skills in a Changing World of Work (pp. 207-226). Rainer Hampp Verlag.
https://doi.org/10.5771/9783957103154-207
[40]  Sahlin, E., & Levenby, R. (2018). Blockchain in Audit Trails: An Investigation of How Blockchain Can Help Auditors to Implement Audit Trails.
[41]  Saloner, B., Polsky, D., Friedman, A., & Rhodes, K. (2015). Primary Care Appointment Availability and Preventive Care Utilization: Evidence from an Audit Study. Medical Care Research and Review, 72, 149-167.
https://doi.org/10.1177/1077558715569541
[42]  Snow, P., Deery, B., Lu, J., Johnston, D., Kirby, P., Sprague, A. Y., & Byington, D. (2014). Business Processes Secured by Immutable Audit Trails on the Blockchain. Brave New Coin.
[43]  Thanasas, G. L., & Kampiotis, G. (2024a). The Role of Big Data Analytics in Financial Decision-Making and Strategic Accounting. Technium Business and Management, 10, 17-33.
https://doi.org/10.47577/business.v10i.11877
[44]  Thanasas, G. L., & Kampiotis, G. (2024b). Transformation in Accounting Practices. Technium Business and Management, 10, 1-16.
https://doi.org/10.47577/business.v10i.11876
[45]  Thanasas, G. L., Theodorakopoulos, L., & Lampropoulos, S. (2022). A Big Data Analysis with Machine Learning Techniques in Accounting Dataset from the Greek Banking System. European Journal of Accounting, Auditing and Finance Research, 10, 1-9.
https://doi.org/10.37745/ejaafr.2013/vol10n819
[46]  Theodorakopoulos, L., Antonopoulou, H., Mamalougou, V., & Giotopoulos, K. (2022). The Drivers of Volume Volatility: A Big Data Analysis Based on Economic Uncertainty Measures for the Greek Banking System. SSRN Electronic Journal.
https://doi.org/10.2139/ssrn.4306619
[47]  Theodorakopoulos, L., Karras, A., Theodoropoulou, A., & Kampiotis, G. (2024a). Benchmarking Big Data Systems: Performance and Decision-Making Implications in Emerging Technologies. Technologies, 12, Article No. 217.
https://doi.org/10.3390/technologies12110217
[48]  Theodorakopoulos, L., Thanasas, G., & Halkiopoulos, C. (2024b). Implications of Big Data in Accounting: Challenges and Opportunities. Emerging Science Journal, 8, 1201-1214.
https://doi.org/10.28991/esj-2024-08-03-024
[49]  Theodorakopoulos, L., Theodoropoulou, A., & Halkiopoulos, C. (2024c). Enhancing Decentralized Decision-Making with Big Data and Blockchain Technology: A Comprehensive Review. Applied Sciences, 14, Article No. 7007.
https://doi.org/10.3390/app14167007
[50]  Theodorakopoulos, L., Theodoropoulou, A., & Stamatiou, Y. (2024d). A State-of-the-Art Review in Big Data Management Engineering: Real-Life Case Studies, Challenges, and Future Research Directions. Eng, 5, 1266-1297.
https://doi.org/10.3390/eng5030068
[51]  Vasilopoulou, C., Theodorakopoulos, L., & Giannoukou, I. (2023a). Big Data and Consumer Behavior: The Power and Pitfalls of Analytics in the Digital Age. Technium Social Sciences Journal, 45, 469-480.
https://doi.org/10.47577/tssj.v45i1.9135
[52]  Vasilopoulou, C., Theodorakopoulos, L., & Giotopoulos, K. (2023b). Big Data Analytics: A Catalyst for Digital Transformation in E-Government. Technium Social Sciences Journal, 45, 449-459.
https://doi.org/10.47577/tssj.v45i1.9134
[53]  Vasilopoulou, C., Theodorakopoulos, L., & Igoumenakis, G. (2023c). The Promise and Peril of Big Data in Driving Consumer Engagement. Technium Social Sciences Journal, 45, 489-499.
https://doi.org/10.47577/tssj.v45i1.9133
[54]  Walker, W. (2007). Ethical Considerations in Phenomenological Research. Nurse Researcher, 14, 36-45.
https://doi.org/10.7748/nr2007.04.14.3.36.c6031
[55]  Williamson, B. (2016). Digital Education Governance: Data Visualization, Predictive Analytics, and “Real-Time” Policy Instruments. Journal of Education Policy, 31, 123-141.
https://doi.org/10.1080/02680939.2015.1035758
[56]  Wu, L., Li, Z., & AbouRizk, S. (2022). Automating Common Data Integration for Improved Data-Driven Decision-Support System in Industrial Construction. Journal of Computing in Civil Engineering, 36, Article ID: 04021037.
https://doi.org/10.1061/(asce)cp.1943-5487.0001001
[57]  Wylde, V., Rawindaran, N., Lawrence, J., Balasubramanian, R., Prakash, E., Jayal, A. et al. (2022). Cybersecurity, Data Privacy and Blockchain: A Review. SN Computer Science, 3, Article No. 127.
https://doi.org/10.1007/s42979-022-01020-4
[58]  Xin, M. Q., Kong, W. Y., Liu, X. W., Wang, Y., Yin, J., & Loang, O. K. (2023). The Impact of Digital Transformation on Financial Reporting and Analysis in the Accounting Industry. International Journal of Accounting, 8, 324-336.
[59]  Zong, Z., & Guan, Y. (2024). AI-Driven Intelligent Data Analytics and Predictive Analysis in Industry 4.0: Transforming Knowledge, Innovation, and Efficiency. Journal of the Knowledge Economy.
https://doi.org/10.1007/s13132-024-02001-z

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133