全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

In Silico Inhibitory Potential of Isolated Molecules of Scoparia dulcis L. (Scrophulariaceae) on SARS-CoV-2 Main Protease Mpro

DOI: 10.4236/pp.2025.162003, PP. 31-51

Keywords: COVID-19, Molecular Docking, Mpro, Biomolecules, Scoparia dulcis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background: The Coronavirus disease 2019 (COVID-19) pandemic, caused by the SARS-CoV-2 coronavirus, remains a global threat despite lifting the health emergency. Scientists from all continents have been mobilized to develop vaccines and medicines for prevention and cure. In Burkina Faso, traditional healers proposed using Scoparia dulcis L., a medicinal plant, to manage COVID-19. Method: In silico screening offers a quick drug-likeness evaluation of Scoparia dulcis L.-isolated biomolecules toward SARS-CoV-2 targets, such as Mpro protease. A review of the literature retrieved 35 biomolecules isolated from Scoparia dulcis. The potential interactions of these biomolecules with the amino acid residues of the SARS-CoV-2 Mpro protease were visualized. Affinities and probable oral route delivery were assessed using reference molecules such as remdesivir and nelfinavir. Results: The screening allowed the retention of 20 hit molecules, which had a better affinity for the target than the reference molecules remdesivir and nelfinavir, and analysis of the results identified height lead molecules with a significant interaction with the Mpro protease and being druggable. There are six flavonoids: cirsimarin, cynaroside, hydroxy-tetramethoxyflavone, gossypetin, luteolin, vitexin, one diterpene, glutinol, and one glycoside, eugenyl-glucoside. These molecules interact with methionine 6 and tyrosine 126 of SARS-CoV-2 Mpro. These two amino acids are essential for the dimerization of Mpro protease. Inhibitory action on Mpro protease can be expected from these biomolecules. Conclusion: Scoparia dulcis L. could help manage COVID-19 because it contains biomolecules that can inactivate SARS-CoV-2 Mpro.

References

[1]  Onyeaka, H., Anumudu, C.K., Al-Sharify, Z.T., Egele-Godswill, E. and Mbaegbu, P. (2021) COVID-19 Pandemic: A Review of the Global Lockdown and Its Far-Reaching Effects. Science Progress, 104.
https://doi.org/10.1177/00368504211019854
[2]  Patterson, G.E., McIntyre, K.M., Clough, H.E. and Rushton, J. (2021) Societal Impacts of Pandemics: Comparing COVID-19 with History to Focus Our Response. Frontiers in Public Health, 9, Article 630449.
https://doi.org/10.3389/fpubh.2021.630449
[3]  World Health Organization (2024) Coronavirus Disease (COVID-19) Pandemic.
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
[4]  Gusev, E., Sarapultsev, A., Solomatina, L. and Chereshnev, V. (2022) SARS-CoV-2-specific Immune Response and the Pathogenesis of COVID-19. International Journal of Molecular Sciences, 23, Article 1716.
https://doi.org/10.3390/ijms23031716
[5]  Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., et al. (2020) Structure of Mpro from SARS-CoV-2 and Discovery of Its Inhibitors. Nature, 582, 289-293.
https://doi.org/10.1038/s41586-020-2223-y
[6]  Hu, Q., Xiong, Y., Zhu, G., Zhang, Y., Zhang, Y., Huang, P., et al. (2022) The SARS‐CoV‐2 Main Protease (Mpro): Structure, Function, and Emerging Therapies for COVID-19. MedComm, 3, e151.
https://doi.org/10.1002/mco2.151
[7]  Shaji, D., Yamamoto, S., Saito, R., Suzuki, R., Nakamura, S. and Kurita, N. (2021) Proposal of Novel Natural Inhibitors of Severe Acute Respiratory Syndrome Coronavirus 2 Main Protease: Molecular Docking and ab Initio Fragment Molecular Orbital Calculations. Biophysical Chemistry, 275, Article ID: 106608.
https://doi.org/10.1016/j.bpc.2021.106608
[8]  Unoh, Y., Uehara, S., Nakahara, K., Nobori, H., Yamatsu, Y., Yamamoto, S., et al. (2022) Discovery of S-217622, a Noncovalent Oral SARS-CoV-2 3CL Protease Inhibitor Clinical Candidate for Treating COVID-19. Journal of Medicinal Chemistry, 65, 6499-6512.
https://doi.org/10.1021/acs.jmedchem.2c00117
[9]  Rai, D.K., Yurgelonis, I., Mcmonagle, P., Rothan, H., AHao, L., Gribenko, A. et al. (2021) Nirmatrelvir, an Orally Active Mpro Inhibitor, Is a Potent Inhibitor of SARS-CoV-2 Variants of Concern. BioRxiv.
https://doi.org/10.1101/2022.01.17.476644
[10]  Zhu, K. (2023) Deuremidevir and Simnotrelvir-Ritonavir for the Treatment of COVID-19. ACS Pharmacology & Translational Science, 6, 1306-1309.
https://doi.org/10.1021/acsptsci.3c00134
[11]  Ng, T.S.B., Leblanc, K., Yeung, D.F. and Tsang, T.S.M. (2021) Médicaments utilisés durant la COVID-19: Examen des données probantes récentes. Canadian Family Physician, 67, e69-e78.
https://doi.org/10.46747/cfp.6703e69
[12]  Moradi, M., Golmohammadi, R., Najafi, A., Moosazadeh Moghaddam, M., Fasihi-Ramandi, M. and Mirnejad, R. (2022) A Contemporary Review on the Important Role of in Silico Approaches for Managing Different Aspects of COVID-19 Crisis. Informatics in Medicine Unlocked, 28, Article ID: 100862.
https://doi.org/10.1016/j.imu.2022.100862
[13]  Leelananda, S.P. and Lindert, S. (2016) Computational Methods in Drug Discovery. Beilstein Journal of Organic Chemistry, 12, 2694-2718.
https://doi.org/10.3762/bjoc.12.267
[14]  Yu, W., Weber, D.J. and MacKerell, A.D. (2022) Computer-Aided Drug Design: An Update. In: Sass, P., Ed., Antibiotics, Springer, 123-152.
https://doi.org/10.1007/978-1-0716-2855-3_7
[15]  Kim, S. (2016) Getting the Most Out of Pubchem for Virtual Screening. Expert Opinion on Drug Discovery, 11, 843-855.
https://doi.org/10.1080/17460441.2016.1216967
[16]  Grosdidier, A. (2015) Conception d’un logiciel de Docking et applications dans la recherche de nouvelles molécules actives. Master’s Thesis, Université Grenoble Alpes, UFR de Pharmacie.
https://dumas.ccsd.cnrs.fr/dumas-01115990v1
[17]  Lagarde, N. (2015) Méthodes de criblage virtuel in silico: Importance de l’évaluation et application à la recherche de nouveaux inhibiteurs de l’interleukine 6. Master’s Thesis, Conservatoire National des Arts et Métiers.
https://theses.hal.science/tel-01132490/file/These_Nathalie_Lagarde.pdf
[18]  Batool, M., Ahmad, B. and Choi, S. (2019) A Structure-Based Drug Discovery Paradigm. International Journal of Molecular Sciences, 20, Article 2783.
https://doi.org/10.3390/ijms20112783
[19]  Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P.J. (2012) Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Advanced Drug Delivery Reviews, 64, 4-17.
https://doi.org/10.1016/j.addr.2012.09.019
[20]  Tsaioun, K. and Kates, S.A. (2010) ADMET for Medicinal Chemists: A Practical Guide. Wiley.
https://doi.org/10.1002/9780470915110.
[21]  Ghose, A.K., Viswanadhan, V.N. and Wendoloski, J.J. (1998) A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. Journal of Combinatorial Chemistry, 1, 55-68.
https://doi.org/10.1021/cc9800071
[22]  Jiang, Z., Sung, J., Wang, X., Zhang, Y., Wang, Y., Zhou, H., et al. (2021) A Review on the Phytochemistry and Pharmacology of the Herb Scoparia dulcis L. for the Potential Treatment of Metabolic Syndrome. RSC Advances, 11, 31235-31259.
https://doi.org/10.1039/d1ra05090g
[23]  Nicolas, J.P. (2009) Plantes médicinales pour le soin de la famille au Burkina Faso.
https://www.jardinsdumonde.org/wp-content/uploads/2016/06/Manuel-Plantes-medicinales-pour-le-soin-de-la-famille-au-Burkina-Faso-léger.pdf
[24]  Vroh, B.T.A. (2020) Plant Species Used in Traditional Medicine against the Main Symptoms of COVID-19 in Sub-Saharan Africa: Literature Review. Ethnobotany Research and Applications, 20, 1-14.
https://doi.org/10.32859/era.20.26.1-14
[25]  Hayashi, T., Kawasaki, M., Miwa, Y., Taga, T. and Morita, N. (1990) Antiviral Agents of Plant Origin. III. Scopadulin, a Novel Tetracyclic Diterpene from Scoparia dulcis L. Chemical and Pharmaceutical Bulletin, 38, 945-947.
https://doi.org/10.1248/cpb.38.945
[26]  National Library of Medicine (2021) PUBCHEM.
https://pubchem.ncbi.nlm.nih.gov
[27]  Noske, G.D., Nakamura, A.M., Gawriljuk, V.O., Fernandes, R.S., Lima, G.M.A., Rosa, H.V.D., et al. (2021) A Crystallographic Snapshot of SARS-CoV-2 Main Protease Maturation Process. Journal of Molecular Biology, 433, Article ID: 167118.
https://doi.org/10.1016/j.jmb.2021.167118
[28]  Noske, G.D., Nakamura, A.M., Gawriljuk, V.O., Lima, G.M.A., Zeri, A.C.M., Nas-cimento, A.F.Z., Oliva, G. and Godoy, A.S. (2025) 7KPH: SARS-CoV-2 Main Protease in Mature Form. RCSB PDB.
https://www.rcsb.org/structure/7KPH
[29]  Salmaso, V. and Moro, S. (2018) Bridging Molecular Docking to Molecular Dynamics in Exploring Ligand-Protein Recognition Process: An Overview. Frontiers in Pharmacology, 9, Article 923.
https://doi.org/10.3389/fphar.2018.00923
[30]  Daina, A., Michielin, O. and Zoete, V. (2017) SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Scientific Reports, 7, Article No. 42717.
https://doi.org/10.1038/srep42717
[31]  Mishra, M.R., Behera, R.K., Jha, S., Panda, A.K., Mishra, A., Pradhan, D.K., Choudary P.R. (2011) A Brief Review on Phytoconstituents and Ethnopharmacology of Scoparia dulcis Linn. (Scrophulariaceae). International Journal of Phytomedicine, 3, 422-438.
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e7566911ea063820658328224afedc4bc7ed72d5
[32]  Hayashi, T., Asano, S., Mizutani, M., Takeguchi, N., Kojima, T., Okamura, K., et al. (1991) Scopadulciol, an Inhibitor of Gastric H+, K+-ATPhase from Scoparia dulcis, and Its Structure-Activity Relation-Ships. Journal of Natural Products, 54, 802-809.
https://doi.org/10.1021/np50075a008
[33]  Sinan, K.I., Bene, K., Zengin, G., Diuzheva, A., Jekő, J., Cziáky, Z., et al. (2019) A Comparative Study of the HPLC-MS Profiles and Biological Efficiency of Different Solvent Leaf Extracts of Two African Plants: Bersama abyssinica and Scoparia dulcis. International Journal of Environmental Health Research, 31, 285-297.
https://doi.org/10.1080/09603123.2019.1652885
[34]  Sharma, K.R. (2015) Immunomodulatory Studies on Triterpenoids from Scoparia dulcis Linn. Biochemistry & Pharmacology: Open Access, 4, Article ID: 1000182.
https://doi.org/10.4172/2167-0501.1000182
[35]  Mahato, S.B., Das, M.C. and Sahu, N.P. (1981) Triterpenoids of Scoparia dulcis. Phytochemistry, 20, 171-173.
https://doi.org/10.1016/0031-9422(81)85243-0
[36]  Wu, W., Chen, T., Lu, R., Chen, S. and Chang, C. (2012) Benzoxazinoids from Scoparia dulcis (Sweet Broomweed) with Antiproliferative Activity against the DU-145 Human Prostate Cancer Cell Line. Phytochemistry, 83, 110-115.
https://doi.org/10.1016/j.phytochem.2012.07.022
[37]  Kawasaki, M., Hayashi, T., Arisawa, M., Morita, N. and Berganza, L.H. (1988) 8-Hydroxytricetin 7-Glucuronide, a β-Glucuronidase Inhibitor from Scoparia dulcis. Phytochemistry, 27, 3709-3711.
https://doi.org/10.1016/0031-9422(88)80811-2
[38]  Li, Y., Chen, X., Satake, M., Oshima, Y. and Ohizumi, Y. (2004) Acetylated Flavonoid Glycosides Potentiating NGF Action from Scoparia dulcis. Journal of Natural Products, 67, 725-727.
https://doi.org/10.1021/np0302908
[39]  Sharma, K.R., Adhikari, A., Hafizur, R.M., Hameed, A., Raza, S.A., Kalauni, S.K., et al. (2015) Potent Insulin Secretagogue from Scoparia dulcis Linn of Nepalese Origin. Phytotherapy Research, 29, 1672-1675.
https://doi.org/10.1002/ptr.5412
[40]  Liu, Q., Yang, Q., Hu, H., Yang, L., Yang, Y., Chou, G., et al. (2014) Bioactive Diterpenoids and Flavonoids from the Aerial Parts of Scoparia dulcis. Journal of Natural Products, 77, 1594-1600.
https://doi.org/10.1021/np500150f
[41]  Osei-Safo, D., Chama, M., Addae-Mensah, I. and Waibel, R. (2009) Hispidulin and Other Constituents of Scoparia dulcis Linn. Journal of Science and Technology (Ghana), 29, 7-15.
https://doi.org/10.4314/just.v29i2.46218
[42]  Phan, M.G., Phan, T.S., Matsunami, K. and Otsuka, H. (2006) Chemical and Biological Evaluation on Scopadulane-Type Diterpenoids from Scoparia dulcis of Vietnamese Origin. Chemical and Pharmaceutical Bulletin, 54, 546-549.
https://doi.org/10.1248/cpb.54.546
[43]  Hayashi, T. (2000) Biologically Active Diterpenoids from Scoparia dulcis L. (Scrophulariaceae). Studies in Natural Products Chemistry, 21, 689-727.
https://doi.org/10.1016/s1572-5995(00)80016-2
[44]  Hayashi, T., Okamura, K., Kakemi, M., Asano, S., Mizutani, M., Takeguchi, N., et al. (1990) Scopadulcic Acid B, a New Tetracyclic Diterpenoid from Scoparia dulcis L. Its Structure, H+, K+-Adenosine Triphosphatase Inhibitory Activity and Pharmacokinetic Behaviour in Rats. Chemical and Pharmaceutical Bulletin, 38, 2740-2745.
https://doi.org/10.1248/cpb.38.2740
[45]  Hayashi, T., Kishi, M., Kawasaki, M., Arisawa, M., Morita, N. and Berganza, L.H. (1988) The Crystal Structure of Scopadulcic Acid a from Paraguayan Crude Drug “Typychá Kuratú” (Scoparia Dulcis). Journal of Natural Products, 51, 360-363.
https://doi.org/10.1021/np50056a034
[46]  Babincová, M., Schronerová, K. and Sourivong, P. (2008) Antiulcer Activity of Water Extract of Scoparia dulcis. Fitoterapia, 79, 587-588.
https://doi.org/10.1016/j.fitote.2008.05.001
[47]  Delaney, J.S. (2004) ESOL: Estimating Aqueous Solubility Directly from Molecular Structure. Journal of Chemical Information and Computer Sciences, 44, 1000-1005.
https://doi.org/10.1021/ci034243x
[48]  Nicolas Marie, F.N. (2018) Affinité, puissance, efficacité d’un agoniste (opioïde): Que recouvrent ces termes? Le Courrier Des Addictions, 20, 12-13.
https://www.edimark.fr/revues/le-courrier-des-addictions/n-1-mars-2018-copy/affinite-puissance-efficacite-dunagoniste-opioide-querecouvrent-ces-termes
[49]  Manus, J. (2020) La FDA approuve le remdesivir comme traitement de la COVID-19. Revue Francophone des Laboratoires, 2020, 5.
https://doi.org/10.1016/s1773-035x(20)30320-8
[50]  Ohashi, H., Watashi, K., Saso, W., Shionoya, K., Iwanami, S., Hirokawa, T., et al. (2021) Potential Anti-COVID-19 Agents, Cepharanthine and Nelfinavir, and Their Usage for Combination Treatment. iScience, 24, Article ID: 102367.
https://doi.org/10.1016/j.isci.2021.102367
[51]  Sztain, T., Amaro, R. and McCammon, J.A. (2021) Elucidation of Cryptic and Allosteric Pockets within the SARS-CoV-2 Main Protease. Journal of Chemical Information and Modeling, 61, 3495-3501.
https://doi.org/10.1021/acs.jcim.1c00140
[52]  Silvestrini, L., Belhaj, N., Comez, L., Gerelli, Y., Lauria, A., Libera, V., et al. (2021) The Dimer-Monomer Equilibrium of SARS-CoV-2 Main Protease Is Affected by Small Molecule Inhibitors. Scientific Reports, 11, Article No. 9283.
https://doi.org/10.1038/s41598-021-88630-9
[53]  Goyal, B. and Goyal, D. (2020) Targeting the Dimerization of the Main Protease of Coronaviruses: A Potential Broad-Spectrum Therapeutic Strategy. ACS Combinatorial Science, 22, 297-305.
https://doi.org/10.1021/acscombsci.0c00058
[54]  Wei, P., Fan, K., Chen, H., Ma, L., Huang, C., Tan, L., et al. (2006) The N-Terminal Octapeptide Acts as a Dimerization Inhibitor of SARS Coronavirus 3C-Like Proteinase. Biochemical and Biophysical Research Communications, 339, 865-872.
https://doi.org/10.1016/j.bbrc.2005.11.102
[55]  Suárez, D. and Díaz, N. (2020) SARS-CoV-2 Main Protease: A Molecular Dynamics Study. Journal of Chemical Information and Modeling, 60, 5815-5831.
https://doi.org/10.1021/acs.jcim.0c00575
[56]  Kneller, D.W., Phillips, G., Weiss, K.L., Pant, S., Zhang, Q., O’Neill, H.M., et al. (2020) Unusual Zwitterionic Catalytic Site of SARS-CoV-2 Main Protease Revealed by Neutron Crystallography. Journal of Biological Chemistry, 295, 17365-17373.
https://doi.org/10.1074/jbc.ac120.016154
[57]  Krishnamoorthy, N. and Fakhro, K. (2021) Identification of Mutation Resistance Coldspots for Targeting the SARS-CoV2 Main Protease. IUBMB Life, 73, 670-675.
https://doi.org/10.1002/iub.2465
[58]  Naik, S.R., Bharadwaj, P., Dingelstad, N., Kalyaanamoorthy, S., Mandal, S.C., Ganesan, A., et al. (2021) Structure-Based Virtual Screening, Molecular Dynamics and Binding Affinity Calculations of Some Potential Phytocompounds against SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 40, 6921-6938.
https://doi.org/10.1080/07391102.2021.1891969
[59]  Giguet-Valard, A., Raguette, K., Morin, S., Bellance, R. and Ravin, J.S. (2020) Gossypetin Derivatives Are Also Putative Inhibitors of SARS-CoV 2: Results of a Computational Study. Journal of Biomedical Research & Environmental Sciences, 1, 201-212.
https://doi.org/10.37871/jbres1144
[60]  Wang, W., Yang, C., Xia, J., Li, N. and Xiong, W. (2023) Luteolin Is a Potential Inhibitor of COVID-19: An in Silico Analysis. Medicine, 102, e35029.
https://doi.org/10.1097/md.0000000000035029
[61]  Li, S., Chen, C., Zhang, H., Guo, H., Wang, H., Wang, L., et al. (2005) Identification of Natural Compounds with Antiviral Activities against SARS-Associated Coronavirus. Antiviral Research, 67, 18-23.
https://doi.org/10.1016/j.antiviral.2005.02.007

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133