全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Biotic and Abiotic Factors Influencing Microsporidia MB Infection in Anopheles coluzzii, Malaria Vector in Burkina Faso

DOI: 10.4236/jbm.2025.132001, PP. 1-17

Keywords: Diet, Relative Humidity, Temperature, Anopheles coluzzii, Microsporidia MB, Malaria

Full-Text   Cite this paper   Add to My Lib

Abstract:

Introduction: A recent study in Kenya highlighted a promising advance in malaria control by demonstrating that infecting mosquitoes with the endosymbiont Microsporidia MB blocks Plasmodium transmission. However, the influence of biotic and abiotic factors such as diet, relative humidity (RH) and temperature on this infection remains poorly studied. This study, aimed to gain a better understanding of this relationship. Methods: To highlight the influence of diet quantity, we defined a range of 3 quantities: 0.00375 g, 0.015 g and 0.09 g. Each quantity was tested on two groups of larvae: a group of 150 larvae infected with Microsporidia MB (MB+), and a group of 150 larvae not infected with Microsporidia MB (MB) (control group), each divided into three replicates of 50 larvae. Each replicate was fed each morning with the assigned quantity until the pupal stage. In addition to this factor, we investigated the influence of temperature and RH. We defined three temperature-RH combinations: 21?C-80% RH, 39?C-50% RH, and 27?C-75% RH. Each combination was tested on two groups of larvae: a group of 150 MB+ larvae and a group of 150 MB larvae, each divided into three replicates of 50 larvae. Each replicate was subjected to the assigned combination until pupation. Pupae that had reached the adult stage were tested by PCR to determine their Microsporidia MB infection status for each factor studied. Results: The results showed that only the lowest quantity (0.00375 g) significantly reduced the prevalence of Microsporidia MB compared with the medium quantity (chi-2 test, χ2 = 4.9088, df = 1, p = 0.02672) and the high quantity (chi-2 test, χ2 = 4.7958, df = 1, p = 0.02853). As for temperature and RH, the combination 39?C-50% RH led to a significant reduction in the prevalence of Microsporidia MB compared with the combination 27?C-75% RH (chi-2 test, χ2 = 6.3736, ddl = 1, p = 0.01158) and that 21?C-80% RH (chi-2 test, χ2 = 9.983, ddl = 1, p = 0.00158). Conclusion: This work contributes to a better understanding of some key factors linked to Microsporidia MB infection in mosquitoes. However, further research on several generations is necessary to draw more comprehensive conclusions.

References

[1]  Cox, F.E. (2010) History of the Discovery of the Malaria Parasites and Their Vectors. Parasites & Vectors, 3, Article No. 5.
https://doi.org/10.1186/1756-3305-3-5
[2]  World Health Organization (2022) World Malaria Report.
https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022
[3]  Ministère de la santé (2022) Annuaire statistique 2021 du Ministère de la Santé et de l’Hygiène Publique du Burkina Faso.
https://www.sante.gov.bf
[4]  Bhatt, S., Weiss, D.J., Cameron, E., Bisanzio, D., Mappin, B., Dalrymple, U., et al. (2015) The Effect of Malaria Control on Plasmodium Falciparum in Africa between 2000 and 2015. Nature, 526, 207-211.
https://doi.org/10.1038/nature15535
[5]  Namountougou, M., Soma, D.D., Kientega, M., Balboné, M., Kaboré, D.P.A., Drabo, S.F., et al. (2019) Insecticide Resistance Mechanisms in Anopheles Gambiae Complex Populations from Burkina Faso, West Africa. Acta Tropica, 197, Article ID: 105054.
https://doi.org/10.1016/j.actatropica.2019.105054
[6]  Herren, J.K., Mbaisi, L., Mararo, E., Makhulu, E.E., Mobegi, V.A., Butungi, H., et al. (2020) A Microsporidian Impairs Plasmodium falciparum Transmission in Anopheles arabiensis Mosquitoes. Nature Communications, 11, Article No. 2187.
https://doi.org/10.1038/s41467-020-16121-y
[7]  Akorli, J., Akorli, E.A., Tetteh, S.N.A., Amlalo, G.K., Opoku, M., Pwalia, R., et al. (2021) Microsporidia MB Is Found Predominantly Associated with Anopheles gambiae s.s and Anopheles coluzzii in Ghana. Scientific Reports, 11, Article No. 18658.
https://doi.org/10.1038/s41598-021-98268-2
[8]  Brinker, P., Fontaine, M.C., Beukeboom, L.W. and Falcao Salles, J. (2019) Host, Symbionts, and the Microbiome: The Missing Tripartite Interaction. Trends in Microbiology, 27, 480-488.
https://doi.org/10.1016/j.tim.2019.02.002
[9]  Colman, D.R., Toolson, E.C. and Takacs‐Vesbach, C.D. (2012) Do Diet and Taxonomy Influence Insect Gut Bacterial Communities? Molecular Ecology, 21, 5124-5137.
https://doi.org/10.1111/j.1365-294x.2012.05752.x
[10]  Corbin, C., Heyworth, E.R., Ferrari, J. and Hurst, G.D.D. (2016) Heritable Symbionts in a World of Varying Temperature. Heredity, 118, 10-20.
https://doi.org/10.1038/hdy.2016.71
[11]  Murdock, C.C., Blanford, S., Hughes, G.L., Rasgon, J.L. and Thomas, M.B. (2014) Temperature Alters Plasmodium Blocking by Wolbachia. Scientific Reports, 4, Article No. 3932.
https://doi.org/10.1038/srep03932
[12]  Sumi, T., Miura, K. and Miyatake, T. (2017) Wolbachia Density Changes Seasonally Amongst Populations of the Pale Grass Blue Butterfly, Zizeeria maha (Lepidoptera: Lycaenidae). PLOS ONE, 12, e0175373.
https://doi.org/10.1371/journal.pone.0175373
[13]  Namountougou, M., Simard, F., Baldet, T., Diabaté, A., Ouédraogo, J.B., Martin, T., et al. (2012) Multiple Insecticide Resistance in Anopheles Gambiae s.l. Populations from Burkina Faso, West Africa. PLOS ONE, 7, e48412.
https://doi.org/10.1371/journal.pone.0048412
[14]  Zoungrana, B.J.-. and Dimobé, K. (2023) NDVI-Derived Vegetation Trends and Driving Factors in West African Sudanian Savanna. American Journal of Plant Sciences, 14, 1130-1145.
https://doi.org/10.4236/ajps.2023.1410077
[15]  Diabaté, A., Dabire, R.K., Kengne, P., Brengues, C., Baldet, T., Ouari, A., et al. (2006) Mixed Swarms of the Molecular M and S Forms of Anopheles gambiae (Diptera: Culicidae) in Sympatric Area from Burkina Faso. Journal of Medical Entomology, 43, 480-483.
https://doi.org/10.1603/0022-2585(2006)43[480:msotmm]2.0.co;2
[16]  Dabiré, K.R., Baldet, T., Diabaté, A., Dia, I., Costantini, C., Cohuet, A., et al. (2007) Anopheles funestus (Diptera: Culicidae) in a Humid Savannah Area of Western Burkina Faso: Bionomics, Insecticide Resistance Status, and Role in Malaria Transmission. Journal of Medical Entomology, 44, 990-997.
https://doi.org/10.1093/jmedent/44.6.990
[17]  Benbouza, H., Baudoin, J.-P. and Mergeai, G. (2006) Amélioration de la méthode d’extraction d’ADN au CTAB appliquée aux feuilles de cotonnier. Biotechnology, Agronomy and Society and Environment, 10, 73-76.
https://popups.uliege.be/1780-4507/index.php?id=1137
[18]  Sadia, G.C. (2021) Impact de quelques facteurs biotiques sur la croissance larvaire des moustiques Anopheles gambiae (Giles, 1902). Afrique Science, 18, 39-50.
[19]  TuTiempo (2023) Données climatiques de Bobo-Dioulasso de 1973 à 2022.
https://www.tutiempo.net/clima/ws-655100.html
[20]  Nattoh, G., Maina, T., Makhulu, E.E., Mbaisi, L., Mararo, E., Otieno, F.G., et al. (2021) Horizontal Transmission of the Symbiont Microsporidia MB in Anopheles arabiensis. Frontiers in Microbiology, 12, Article 647183.
https://doi.org/10.3389/fmicb.2021.647183
[21]  Hurst, C.J. (2016) The Rasputin Effect: When Commensals and Symbionts Become Parasitic. Springer International Publishing.
[22]  MacLeod, H.J., Dimopoulos, G. and Short, S.M. (2021) Larval Diet Abundance Influences Size and Composition of the Midgut Microbiota of Aedes aegypti Mosquitoes. Frontiers in Microbiology, 12, Article 645362.
https://doi.org/10.3389/fmicb.2021.645362
[23]  Souza, R.S., Virginio, F., Riback, T.I.S., Suesdek, L., Barufi, J.B. and Genta, F.A. (2019) Microorganism-based Larval Diets Affect Mosquito Development, Size and Nutritional Reserves in the Yellow Fever Mosquito Aedes aegypti (Diptera: Culicidae). Frontiers in Physiology, 10, Article 152.
https://doi.org/10.3389/fphys.2019.00152
[24]  Agyekum, T.P., Botwe, P.K., Arko-Mensah, J., Issah, I., Acquah, A.A., Hogarh, J.N., et al. (2021) A Systematic Review of the Effects of Temperature on Anopheles Mosquito Development and Survival: Implications for Malaria Control in a Future Warmer Climate. International Journal of Environmental Research and Public Health, 18, Article 7255.
https://doi.org/10.3390/ijerph18147255
[25]  Kikuchi, Y., Tada, A., Musolin, D.L., Hari, N., Hosokawa, T., Fujisaki, K., et al. (2016) Collapse of Insect Gut Symbiosis under Simulated Climate Change. mBio, 7.
https://doi.org/10.1128/mbio.01578-16
[26]  Adelman, Z.N., Anderson, M.A.E., Wiley, M.R., Murreddu, M.G., Samuel, G.H., Morazzani, E.M., et al. (2013) Cooler Temperatures Destabilize RNA Interference and Increase Susceptibility of Disease Vector Mosquitoes to Viral Infection. PLOS Neglected Tropical Diseases, 7, e2239.
https://doi.org/10.1371/journal.pntd.0002239
[27]  Ross, P.A. (2021) Designing Effective Wolbachia Release Programs for Mosquito and Arbovirus Control. Acta Tropica, 222, Article ID: 106045.
https://doi.org/10.1016/j.actatropica.2021.106045
[28]  Mourot, E. (2020) Biodiversité et moustiques face au changement climatique et à la mondialisation—Impacts sur la santé en France métropolitaine. Master’s Thesis, Université de Bordeaux.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133