全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

从微生物角度揭示气候变暖对土壤有机碳转化的影响
Revealing the Impact of Climate Warming on Soil Organic Carbon Transformation from the Microbial Perspective

DOI: 10.12677/hjss.2025.131008, PP. 58-67

Keywords: 土壤有机碳,气候变暖,CO2浓度,植物功能群,生态系统多功能性
Soil Organic Carbon
, Climate Warming, CO? Concentration, Plant Functional Groups, Ecosystem Multifunctionality

Full-Text   Cite this paper   Add to My Lib

Abstract:

全球气候变化对陆地生态系统的功能产生了重要影响,土壤有机碳(SOC)是维持陆地生态系统生产力和可持续性的关键,以CO2为主的温室气体的过量排放导致全球气候持续变暖。微生物是SOC周转的动力,是全球变暖影响SOC储量与化学特性的关键媒介。气候变暖导致大部分农田和森林的有机碳储量下降,但草原的有机碳含量升高,这可能与微生物对有机碳的异化分解和同化固定之间的权衡有关。气温的升高和与之相伴的CO2浓度升高有利于植物生长,使得植物光合作用增强,向土壤中输入的有机碳增加,这些外源有机碳在微生物的作用下转化为稳定碳源,可直接提高微生物的呼吸活性,真菌在土壤微生物中的比例降低,而细菌所占的比例升高,对土壤碳库的储存产生不利影响。植物功能群(BFGs)促进土壤活性有机碳库的释放,提高土壤微生物的碳矿化速率。在评估农业生态系统多功能性(EMF)响应时,不仅要考虑微生物多样性,还要考虑它们之间的相互作用,这对预测未来气候变化情景下生态系统功能的变化具有重要意义。从多角度入手,深入认识气候–微生物-SOC之间的关系,有利于在全球变化的大背景下,充分发挥土壤碳汇效应,为实现“碳达峰”和“碳中和”提供理论与政策依据。
Global climate change has a significant impact on the functions of terrestrial ecosystems. Soil Organic Carbon (SOC) is crucial for maintaining the productivity and sustainability of terrestrial ecosystems. The excessive emission of greenhouse gases, mainly CO?, has led to continuous global warming. Microorganisms are the driving force behind SOC turnover and the key medium through which global warming affects SOC reserves and chemical properties. Climate warming has caused a decline in the organic carbon reserves of most farmlands and forests, but an increase in the organic carbon content of grasslands. This may be related to the trade-off between the dissimilatory decomposition and assimilatory fixation of organic carbon by microorganisms. The rise in temperature, accompanied by an increase in CO? concentration, is conducive to plant growth, enhancing plant photosynthesis and increasing the input of organic carbon into the soil. Under the action of microorganisms, these exogenous organic carbons are transformed into stable carbon sources, which can directly boost the respiratory activity of microorganisms. The proportion of fungi in soil microorganisms decreases while that of bacteria rises, having an adverse effect on soil carbon pool storage. Plant Functional Groups (BFGs) promote the release of the soil labile organic carbon pool and increase the carbon mineralization rate of soil microorganisms. When evaluating the response of the multifunctionality of agroecosystems (EMF), it is necessary to consider not only microbial diversity but also their interactions. This is of great significance for predicting changes in ecosystem functions under future climate change scenarios. By exploring the relationship among climate, microorganisms, and SOC from multiple perspectives, it is conducive to giving full play to the soil carbon sink effect against the

References

[1]  张旸. 秸秆还田与施氮水平对东北黑土氮素周转的影响[D]: [博士学位论文]. 中国科学院大学, 2024.
[2]  Teng, J., Hou, R., Dungait, J.A.J., Zhou, G., Kuzyakov, Y., Zhang, J., et al. (2024) Conservation Agriculture Improves Soil Health and Sustains Crop Yields after Long-Term Warming. Nature Communications, 15, Article No. 8785.
https://doi.org/10.1038/s41467-024-53169-6
[3]  Ni, H., Hu, H., Zohner, C.M., Huang, W., Chen, J., Sun, Y., et al. (2024) Effects of Winter Soil Warming on Crop Biomass Carbon Loss from Organic Matter Degradation. Nature Communications, 15, Article No. 8847.
https://doi.org/10.1038/s41467-024-53216-2
[4]  Wang, C., Shen, Y., Fang, X., Xiao, S., Liu, G., Wang, L., et al. (2024) Reducing Soil Nitrogen Losses from Fertilizer Use in Global Maize and Wheat Production. Nature Geoscience, 17, 1008-1015.
https://doi.org/10.1038/s41561-024-01542-x
[5]  Wang, X., Cui, C., Xu, M., Cheng, B. and Zhuang, M. (2024) Key Technologies Improvements Promote the Economic-Environmental Sustainability in Wheat Production of China. Journal of Cleaner Production, 443, Article ID: 141230.
https://doi.org/10.1016/j.jclepro.2024.141230
[6]  Liu, Y., Zhuang, M., Liang, X., Lam, S.K., Chen, D., Malik, A., et al. (2024) Localized Nitrogen Management Strategies Can Halve Fertilizer Use in Chinese Staple Crop Production. Nature Food, 5, 825-835.
https://doi.org/10.1038/s43016-024-01057-z
[7]  Wei, H., Li, Y., Zhu, K., Ju, X. and Wu, D. (2024) The Divergent Role of Straw Return in Soil O2 Dynamics Elucidates Its Confounding Effect on Soil N2O Emission. Soil Biology and Biochemistry, 199, Article ID: 109620.
https://doi.org/10.1016/j.soilbio.2024.109620
[8]  Ji, L., Tian, C. and Kuramae, E.E. (2023) Phosphorus-Mediated Succession of Microbial Nitrogen, Carbon, and Sulfur Functions in Rice-Driven Saline-Alkali Soil Remediation. Soil Biology and Biochemistry, 184, Article ID: 109125.
https://doi.org/10.1016/j.soilbio.2023.109125
[9]  Pei, J., Fang, C., Li, B., Nie, M. and Li, J. (2024) Direct Evidence for Microbial Regulation of the Temperature Sensitivity of Soil Carbon Decomposition. Global Change Biology, 30, e17523.
https://doi.org/10.1111/gcb.17523
[10]  Wang, Y., Bing, H., Moorhead, D.L., Hou, E., Wu, Y., Wang, J., et al. (2024) Bacterial Community Structure Modulates Soil Phosphorus Turnover at Early Stages of Primary Succession. Global Biogeochemical Cycles, 38, e2024GB008174.
https://doi.org/10.1029/2024gb008174
[11]  Elrys, A.S., Chen, S., Kong, M., Liu, L., Zhu, Q., Dan, X., et al. (2024) Organic Fertilization Strengthens Multiple Internal Pathways for Soil Mineral Nitrogen Production: Evidence from the Meta-Analysis of Long-Term Field Trials. Biology and Fertility of Soils, 60, 1173-1180.
https://doi.org/10.1007/s00374-024-01856-3
[12]  Zhou, Y., Liu, D., Li, F., Dong, Y., Jin, Z., Liao, Y., et al. (2024) Superiority of Native Soil Core Microbiomes in Supporting Plant Growth. Nature Communications, 15, Article No. 6599.
https://doi.org/10.1038/s41467-024-50685-3
[13]  Garrido-Sanz, D., Čaušević, S., Vacheron, J., Heiman, C.M., Sentchilo, V., van der Meer, J.R., et al. (2023) Changes in Structure and Assembly of a Species-Rich Soil Natural Community with Contrasting Nutrient Availability Upon Establishment of a Plant-Beneficial Pseudomonas in the Wheat Rhizosphere. Microbiome, 11, Article No. 214.
https://doi.org/10.1186/s40168-023-01660-5
[14]  Sun, Y., Yang, X., Elsgaard, L., Du, T., Siddique, K.H.M., Kang, S., et al. (2024) Diversified Crop Rotations Improve Soil Microbial Communities and Functions in a Six-Year Field Experiment. Journal of Environmental Management, 370, Article ID: 122604.
https://doi.org/10.1016/j.jenvman.2024.122604
[15]  Fu, Y., Luo, Y., Qi, J., He, X., Zhang, H., Guggenberger, G., et al. (2024) Shift of Microbial Taxa and Metabolisms Relying on Carbon Sources of Rhizodeposits and Straw of Zea mays L. Soil Biology and Biochemistry, 198, Article ID: 109578.
https://doi.org/10.1016/j.soilbio.2024.109578
[16]  Liang, Y., Hu, H., Crowther, T.W., Jörgensen, R.G., Liang, C., Chen, J., et al. (2024) Global Decline in Microbial-Derived Carbon Stocks with Climate Warming and Its Future Projections. National Science Review, 11, nwae330.
https://doi.org/10.1093/nsr/nwae330
[17]  Wang, L., Wang, J., Yuan, J., Tang, Z., Wang, J. and Zhang, Y. (2023) Long-Term Organic Fertilization Strengthens the Soil Phosphorus Cycle and Phosphorus Availability by Regulating the PQQC-and PHOD-Harboring Bacterial Communities. Microbial Ecology, 86, 2716-2732.
https://doi.org/10.1007/s00248-023-02279-7
[18]  Rizzo, G., Agus, F., Susanti, Z., Buresh, R., Cassman, K.G., Dobermann, A., et al. (2024) Potassium Limits Productivity in Intensive Cereal Cropping Systems in Southeast Asia. Nature Food, 5, 929-938.
https://doi.org/10.1038/s43016-024-01065-z
[19]  Zhai, C., Han, L., Xiong, C., Ge, A., Yue, X., Li, Y., et al. (2024) Soil Microbial Diversity and Network Complexity Drive the Ecosystem Multifunctionality of Temperate Grasslands under Changing Precipitation. Science of the Total Environment, 906, Article ID: 167217.
https://doi.org/10.1016/j.scitotenv.2023.167217
[20]  Jayaramaiah, R.H., Martins, C.S.C., Egidi, E., Macdonald, C.A., Wang, J., Liu, H., et al. (2025) Soil Function-Microbial Diversity Relationship Is Impacted by Plant Functional Groups under Climate Change. Soil Biology and Biochemistry, 200, Article ID: 109623.
https://doi.org/10.1016/j.soilbio.2024.109623
[21]  Zhou, X., Zhang, J., Shi, J., Khashi u Rahman, M., Liu, H., Wei, Z., et al. (2024) Volatile-Mediated Interspecific Plant Interaction Promotes Root Colonization by Beneficial Bacteria via Induced Shifts in Root Exudation. Microbiome, 12, Article No. 207.
https://doi.org/10.1186/s40168-024-01914-w
[22]  Liu, Y., Zou, X., Chen, H.Y.H., Delgado‐Baquerizo, M., Wang, C., Zhang, C., et al. (2023) Fungal Necromass Is Reduced by Intensive Drought in Subsoil but Not in Topsoil. Global Change Biology, 29, 7159-7172.
https://doi.org/10.1111/gcb.16978
[23]  Li, Q., Liu, Y., Su, N., Tian, C., Zhang, Y., Tan, L., et al. (2025) Knowledge-Based Phosphorus Input Levels Control the Link between Soil Microbial Diversity and Ecosystem Functions in Paddy Fields. Agriculture, Ecosystems & Environment, 379, Article ID: 109352.
https://doi.org/10.1016/j.agee.2024.109352
[24]  Jiao, S., Xu, Y., Zhang, J., Hao, X. and Lu, Y. (2019) Core Microbiota in Agricultural Soils and Their Potential Associations with Nutrient Cycling. mSystems, 4, e00313-18.
https://doi.org/10.1128/msystems.00313-18
[25]  Yang, X., Ma, S., Huang, E., Zhang, D., Chen, G., Zhu, J., et al. (2024) Nitrogen Addition Promotes Soil Carbon Accumulation Globally. Science China Life Sciences, 68, 284-293.
https://doi.org/10.1007/s11427-024-2752-2
[26]  Shi, X., Eisenhauer, N., Peñuelas, J., Fu, Y., Wang, J., Chen, Y., et al. (2024) Trophic Interactions in Soil Micro‐Food Webs Drive Ecosystem Multifunctionality along Tree Species Richness. Global Change Biology, 30, e17234.
https://doi.org/10.1111/gcb.17234
[27]  Zhou, Z., Wang, C., Cha, X., Zhou, T., Pang, X., Zhao, F., et al. (2024) The Biogeography of Soil Microbiome Potential Growth Rates. Nature Communications, 15, Article No. 9472.
https://doi.org/10.1038/s41467-024-53753-w
[28]  Manning, P., van der Plas, F., Soliveres, S., Allan, E., Maestre, F.T., Mace, G., et al. (2018) Redefining Ecosystem Multifunctionality. Nature Ecology & Evolution, 2, 427-436.
https://doi.org/10.1038/s41559-017-0461-7
[29]  李彦林, 陈杨洋, 杨霜溶, 等. 植物根系分泌的有机酸对土壤碳氮矿化的影响[J]. 生态环境学报, 2024, 33(9): 1362-1371.
[30]  Guo, Z., Liu, J., He, L., Rodrigues, J.L.M., Chen, N., Zuo, Y., et al. (2024) Dominant Edaphic Controls on Particulate Organic Carbon in Global Soils. Global Change Biology, 30, e17619.
https://doi.org/10.1111/gcb.17619
[31]  Wang, X., Yang, M., Gao, L., Li, Y., Liang, W. and Zhang, X. (2024) Continuous Cropping Obstacles: Insights from the Community Composition and the Imbalance Carbon Fluxes within Soil Nematode Food Web. Geoderma, 451, Article ID: 117060.
https://doi.org/10.1016/j.geoderma.2024.117060
[32]  Wang, H., Lu, J., Dijkstra, F.A., Sun, L., Yin, L., Wang, P., et al. (2025) Rhizosphere Priming Effects and Trade-Offs among Root Traits, Exudation and Mycorrhizal Symbioses. Soil Biology and Biochemistry, 202, Article ID: 109690.
https://doi.org/10.1016/j.soilbio.2024.109690
[33]  Winterfeldt, S., Cruz-Paredes, C., Rousk, J. and Leizeaga, A. (2024) Microbial Resistance and Resilience to Drought across a European Climate Gradient. Soil Biology and Biochemistry, 199, Article ID: 109574.
https://doi.org/10.1016/j.soilbio.2024.109574
[34]  Mo, F., Li, C. and Zhou, Q. (2024) The Pivotal Role of Phosphorus Level Gradient in Regulating Nitrogen Cycle in Wetland Ecosystems. Science of the Total Environment, 943, Article ID: 173646.
https://doi.org/10.1016/j.scitotenv.2024.173646
[35]  Ren, C., Zhou, Z., Delgado-Baquerizo, M., Bastida, F., Zhao, F., Yang, Y., et al. (2024) Thermal Sensitivity of Soil Microbial Carbon Use Efficiency across Forest Biomes. Nature Communications, 15, Article No. 6269.
https://doi.org/10.1038/s41467-024-50593-6
[36]  Zhang, G., Bai, J., Jia, J., Wang, W., Wang, D., Zhao, Q., et al. (2023) Soil Microbial Communities Regulate the Threshold Effect of Salinity Stress on SOM Decomposition in Coastal Salt Marshes. Fundamental Research, 3, 868-879.
https://doi.org/10.1016/j.fmre.2023.02.024
[37]  Baker, N.R., Zhalnina, K., Yuan, M., Herman, D., Ceja-Navarro, J.A., Sasse, J., et al. (2024) Nutrient and Moisture Limitations Reveal Keystone Metabolites Linking Rhizosphere Metabolomes and Microbiomes. Proceedings of the National Academy of Sciences of the United States of America, 121, e2303439121.
https://doi.org/10.1073/pnas.2303439121
[38]  Liu, C., Bai, Z., Luo, Y., Zhang, Y., Wang, Y., Liu, H., et al. (2024) Multiomics Dissection of Brassica napus L. Lateral Roots and Endophytes Interactions under Phosphorus Starvation. Nature Communications, 15, Article No. 9732.
https://doi.org/10.1038/s41467-024-54112-5
[39]  Feng, Z., Liang, Q., Yao, Q., Bai, Y. and Zhu, H. (2024) The Role of the Rhizobiome Recruited by Root Exudates in Plant Disease Resistance: Current Status and Future Directions. Environmental Microbiome, 19, Article No. 91.
https://doi.org/10.1186/s40793-024-00638-6
[40]  Zhu, D., Liu, S., Sun, M., Yi, X., Duan, G., Ye, M., et al. (2024) Adaptive Expression of Phage Auxiliary Metabolic Genes in Paddy Soils and Their Contribution toward Global Carbon Sequestration. Proceedings of the National Academy of Sciences of the United States of America, 121, e2419798121.
https://doi.org/10.1073/pnas.2419798121
[41]  Zhao, X., Gao, Z., Peng, J., Konstantinidis, K.T. and Zhang, S. (2024) Various Microbial Taxa Couple Arsenic Transformation to Nitrogen and Carbon Cycling in Paddy Soils. Microbiome, 12, Article No. 238.
https://doi.org/10.1186/s40168-024-01952-4
[42]  Zhang, H., Ruan, Y., Kuzyakov, Y., Qiao, Y., Xu, Q., Huang, Q., et al. (2024) Carbon Flow from Roots to Rhizobacterial Networks: Grafting Effects. Soil Biology and Biochemistry, 199, Article ID: 109580.
https://doi.org/10.1016/j.soilbio.2024.109580

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133