全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

色散和非线性效应对啁啾艾里脉冲传输影响的研究
Study on the Influence of Dispersion and Nonlinear Effects on the Propagation of Chirped Airy Pulse

DOI: 10.12677/oe.2024.144008, PP. 61-71

Keywords: 超快光学,啁啾艾里脉冲,拉曼效应,三阶色散,拉曼频移
Ultrafast Optic
, Academicjournals Chirped Airy Pulse, Raman Effect, Third Order Dispersion, Raman Frequency Shift

Full-Text   Cite this paper   Add to My Lib

Abstract:

艾里脉冲由于其独特的性质,引起人们广泛关注和研究。本文从理论上讨论了色散和非线性效应对啁啾艾里脉冲的传输影响。结果表明:在非线性条件下,三阶色散发挥作用时,通过改变三阶色散系数,我们发现三阶色散系数和峰值强度之间的变化关系。当拉曼效应发挥作用时,正啁啾和负啁啾在时域或频域呈现出不同的变化趋势。当拉曼效应和三阶色散共同作用时,正啁啾情况下,我们可以得出随着三阶色散系数增大,三阶色散抑制拉曼产生的频移。然而负啁啾情况下,三阶色散不能抑制或增强拉曼频移,只能改变脉冲的峰值强度。为了增大脉冲的峰值强度,我们探究啁啾参数和三阶色散系数达到平衡时,脉冲的频移不会改变。
Airy pulse has attracted extensive attention and research because of its unique properties. In this paper, the effects of dispersion and nonlinear effects on the propagation of chirped Airy pulse are studied theoretically. The results show that when the third-order dispersion plays a role under nonlinear conditions, by changing the third-boundary dispersion coefficients, we find a changing relationship between the third-order dispersion coefficients and the peak intensity. When the Raman effect comes into play, the positive chirp and negative chirp show different trends in the time or frequency domain. When the Raman effect and the third-order dispersion work together, in the positive chirp case, we can conclude that the third-order dispersion suppresses the Raman-generated frequency shift as the third-order dispersion coefficient increases. However, in the negative chirp case, the third-order dispersion cannot suppress or enhance the Raman frequency shift, but only change the peak intensity of the pulse. In order to increase the peak intensity of the pulse, we explore that the frequency shift of the pulse does not change when the chirp coefficient and the third-order dispersion coefficient are balanced.

References

[1]  Berry, M.V. and Balazs, N.L. (1979) Nonspreading Wave Packets. American Journal of Physics, 47, 264-267.
https://doi.org/10.1119/1.11855
[2]  Durnin, J. (1987) Exact Solutions for Nondiffracting Beams I the Scalar Theory. Journal of the Optical Society of America A, 4, 651-654.
https://doi.org/10.1364/josaa.4.000651
[3]  Durnin, J., Miceli, J.J. and Eberly, J.H. (1987) Diffraction-Free Beams. Physical Review Letters, 58, 1499-1501.
https://doi.org/10.1103/physrevlett.58.1499
[4]  Siviloglou, G.A., Broky, J., Dogariu, A. and Christodoulides, D.N. (2007) Observation of Accelerating Airy Beams. Physical Review Letters, 99, Article ID: 213901.
https://doi.org/10.1103/physrevlett.99.213901
[5]  Siviloglou, G.A. and Christodoulides, D.N. (2007) Accelerating Finite Energy Airy Beams. Optics Letters, 32, 979-981.
https://doi.org/10.1364/ol.32.000979
[6]  Greenberger, D.M. (1980) Comment on “Nonspreading Wave Packets”. American Journal of Physics, 48, 256-256.
https://doi.org/10.1119/1.12308
[7]  Hu, Y., Siviloglou, G.A., Zhang, P., Efremidis, N.K., Christodoulides, D.N. and Chen, Z. (2012) Self-Accelerating Airy Beams: Generation, Control, and Applications. In: Chen, Z. and Morandotti, R., Eds., Nonlinear Photonics and Novel Optical Phenomena, Springer, 1-46.
https://doi.org/10.1007/978-1-4614-3538-9_1
[8]  Stützle, R., Göbel, M.C., Hörner, T., Kierig, E., Mourachko, I., Oberthaler, M.K., et al. (2005) Observation of Nonspreading Wave Packets in an Imaginary Potential. Physical Review Letters, 95, Article ID: 110405.
https://doi.org/10.1103/physrevlett.95.110405
[9]  Broky, J., Siviloglou, G.A., Dogariu, A. and Christodoulides, D.N. (2008) Self-Healing Properties of Optical Airy Beams. Optics Express, 16, 12880-12891.
https://doi.org/10.1364/oe.16.012880
[10]  Baumgartl, J., Mazilu, M. and Dholakia, K. (2008) Optically Mediated Particle Clearing Using Airy Wavepackets. Nature Photonics, 2, 675-678.
https://doi.org/10.1038/nphoton.2008.201
[11]  Zhang, P., Prakash, J., Zhang, Z., Mills, M.S., Efremidis, N.K., Christodoulides, D.N., et al. (2011) Trapping and Guiding Microparticles with Morphing Autofocusing Airy Beams. Optics Letters, 36, 2883-2885.
https://doi.org/10.1364/ol.36.002883
[12]  Polynkin, P., Kolesik, M. and Moloney, J. (2009) Filamentation of Femtosecond Laser Airy Beams in Water. Physical Review Letters, 103, Article ID: 123902.
https://doi.org/10.1103/physrevlett.103.123902
[13]  Papazoglou, D.G., Suntsov, S., Abdollahpour, D. and Tzortzakis, S. (2010) Tunable Intense Airy Beams and Tailored Femtosecond Laser Filaments. Physical Review A, 81, Article ID: 061807.
https://doi.org/10.1103/physreva.81.061807
[14]  Panagiotopoulos, P., Abdollahpour, D., Lotti, A., Couairon, A., Faccio, D., Papazoglou, D.G., et al. (2012) Nonlinear Propagation Dynamics of Finite-Energy Airy Beams. Physical Review A, 86, Article ID: 013842.
https://doi.org/10.1103/physreva.86.013842
[15]  蔡汪洋. 光纤中艾里脉冲的传输特性研究[D]: [博士学位论文]. 长沙: 湖南大学, 2018.
[16]  Fattal, Y., Rudnick, A. and Marom, D.M. (2011) Soliton Shedding from Airy Pulses in Kerr Media. Optics Express, 19, 17298-17307.
https://doi.org/10.1364/oe.19.017298
[17]  Cai, W., Mills, M.S., Christodoulides, D.N. and Wen, S. (2014) Soliton Manipulation Using Airy Pulses. Optics Communications, 316, 127-131.
https://doi.org/10.1016/j.optcom.2013.11.057
[18]  Kasparian, J., Sauerbrey, R., Mondelain, D., Niedermeier, S., Yu, J., Wolf, J., et al. (2000) Infrared Extension of the Supercontinuum Generated by Femtosecond Terawatt Laser Pulses Propagating in the Atmosphere. Optics Letters, 25, 1397-1399.
https://doi.org/10.1364/ol.25.001397
[19]  Kartazaev, V. and Alfano, R.R. (2007) Supercontinuum Generated in Calcite with Chirped Femtosecond Pulses. Optics Letters, 32, 3293-3295.
https://doi.org/10.1364/ol.32.003293
[20]  Nuter, R., Skupin, S. and Bergé, L. (2005) Chirp-Induced Dynamics of Femtosecond Filaments in Air. Optics Letters, 30, 917-919.
https://doi.org/10.1364/ol.30.000917
[21]  Couairon, A. and Mysyrowicz, A. (2007) Femtosecond Filamentation in Transparent Media. Physics Reports, 441, 47-189.
https://doi.org/10.1016/j.physrep.2006.12.005
[22]  Park, J., Lee, J. and Nam, C.H. (2008) Laser Chirp Effect on Femtosecond Laser Filamentation Generated for Pulse Compression. Optics Express, 16, 4465-4470.
https://doi.org/10.1364/oe.16.004465
[23]  Zhang, L., Liu, K., Zhong, H., Zhang, J., Li, Y. and Fan, D. (2015) Effect of Initial Frequency Chirp on Airy Pulse Propagation in an Optical Fiber. Optics Express, 23, 2566-2576.
https://doi.org/10.1364/oe.23.002566
[24]  Zhang, L., Zhang, J., Chen, Y., Liu, A. and Liu, G. (2014) Dynamic Propagation of Finite-Energy Airy Pulses in the Presence of Higher-Order Effects. Journal of the Optical Society of America B, 31, 889-897.
https://doi.org/10.1364/josab.31.000889
[25]  Purohit, A., Gaur, D.S. and Mishra, A.K. (2021) Dynamics of a Chirped Airy Pulse in a Dispersive Medium with Higher-Order Nonlinearity. Journal of the Optical Society of America B, 38, 3608-3615.
https://doi.org/10.1364/josab.439227
[26]  Wang, Y., Xin, Z. and Li, M. (2022) Initial Chirp-Induced Raman Frequency Shift of Airy Pulse. Optics Communications, 510, Article ID: 127953.
https://doi.org/10.1016/j.optcom.2022.127953
[27]  Agrawal, G.P. (2010) Nonlinear Fiber Optics & Applications of Nonlinear Fiber Optics. 3rd Edition, Publishing House of Electronics Industry, 31-34.
[28]  Zhao, H., Song, Z.M., Zhou, L.J., et al. (2022) Chirped Airy Pulse Modulated by Gaussian Pulse. Acta Optica Sinica, 42, Article ID: 0832001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133