全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

环形半导体发光器件研究进展
Research Progress on Circular Semiconductor Light Emitting Devices

DOI: 10.12677/ms.2025.151021, PP. 184-199

Keywords: 光通信,光频梳,环形激光器,半导体发光器件
Optical Communication
, Optical Frequency Combs, Ring Laser, Semiconductor Light Emitting Devices

Full-Text   Cite this paper   Add to My Lib

Abstract:

环形半导体发光器件因其独特的环形结构设计,在光通信、量子信息处理、显示技术及生物医学成像等多个领域展现了广泛的应用前景。环形结构通过优化光反馈和光提取路径,提高了器件的发光效率、降低了阈值电流,并显著增强了频率调制带宽。本文首先综述了环形半导体发光器件的工作原理与不同类型的器件,包括环形激光器、环形LED和光梳光源等。接着,本文讨论了环形半导体发光器件的材料选择和制造工艺对性能的影响,重点介绍了高品质因子结构的实现途径以及量子结构在提高光学性能中的作用。最后,本文展望了环形半导体发光器件在未来光电子技术、量子信息系统和精密测量中的应用潜力,强调了其在推动高效光源和集成光电子系统发展中的重要作用。
Circular Semiconductor Light Emitting Devices have shown broad application prospects in various fields such as optical communication, quantum information processing, display technology, and biomedical imaging due to their unique circular structure design. The circular structure improves the luminescence efficiency of the device, reduces the threshold current, and significantly enhances the frequency modulation bandwidth by optimizing the optical feedback and extraction paths. This article first summarizes the working principle of ring Semiconductor Light Emitting Devices and different types of devices, including ring lasers, ring LEDs, and comb light sources. Next, this article discusses the influence of material selection and manufacturing processes on the performance of ring-shaped Semiconductor Light Emitting Devices, with a focus on the implementation of high-quality factor structures and the role of quantum structures in improving optical performance. Finally, this article looks forward to the potential applications of circular Semiconductor Light Emitting Devices in future optoelectronic technology, quantum information systems, and precision measurement, emphasizing their important role in promoting the development of efficient light sources and integrated optoelectronic systems.

References

[1]  Liao, A.S. and Wang, S. (1980) Semiconductor Injection Lasers with a Circular Resonator. Applied Physics Letters, 36, 801-803.
https://doi.org/10.1063/1.91321

[2]  于欣. 半导体环形激光器的研究[D]: [博士学位论文]. 天津: 天津大学, 2011.
[3]  叶志镇, 王凤志, 陈芳, 等. 宽禁带半导体光电材料及其应用研究[J]. 光学学报, 2022, 42(17): 303-321.
[4]  Javaloyes, J. and Balle, S. (2009) Emission Directionality of Semiconductor Ring Lasers: A Traveling-Wave Description. IEEE Journal of Quantum Electronics, 45, 431-438.
https://doi.org/10.1109/jqe.2009.2014079

[5]  曾莹, 任波, 徐名琪, 等. 半导体量子点分子-腔光机械耦合系统中光学双稳及多稳态的形成及调控[J]. 原子与分子物理学报, 2025, 42(5): 121-128.
[6]  Born, C., Sorel, M. and Siyuan Yu, (2005) Linear and Nonlinear Mode Interactions in a Semiconductor Ring Laser. IEEE Journal of Quantum Electronics, 41, 261-271.
https://doi.org/10.1109/jqe.2004.841614

[7]  Sorel, M., Giuliani, G., Scire, A., Miglierina, R., Donati, S. and Laybourn, P.J.R. (2003) Operating Regimes of GaAs-AlGaAs Semiconductor Ring Lasers: Experiment and Model. IEEE Journal of Quantum Electronics, 39, 1187-1195.
https://doi.org/10.1109/jqe.2003.817585

[8]  Van, V., Ibrahim, T.A., Absil, P.P., Johnson, F.G., Grover, R. and Ho, P.-. (2002) Optical Signal Processing Using Nonlinear Semiconductor Microring Resonators. IEEE Journal of Selected Topics in Quantum Electronics, 8, 705-713.
https://doi.org/10.1109/jstqe.2002.1016376

[9]  Hill, M.T., Dorren, H.J.S., de Vries, T., Leijtens, X.J.M., den Besten, J.H., Smalbrugge, B., et al. (2004) A Fast Low-Power Optical Memory Based on Coupled Micro-Ring Lasers. Nature, 432, 206-209.
https://doi.org/10.1038/nature03045

[10]  薛萍萍, 杨玲珍, 张建忠, 等. 半导体环形激光器高偏置电流下的动态特性[J]. 中国激光, 2015, 42(2): 7-13.
[11]  Kataria, H., Junesand, C., Wang, Z., Metaferia, W., Sun, Y.T., Lourdudoss, S., et al. (2013) Towards a Monolithically Integrated III-V Laser on Silicon: Optimization of Multi-Quantum Well Growth on INP on Si. Semiconductor Science and Technology, 28, Article ID: 094008.
https://doi.org/10.1088/0268-1242/28/9/094008

[12]  Wong, W.W. (2022) Epitaxial Growth of III-V Micro-Ring Lasers for Optoelectronic Applications. Master’s Thesis, The Australian National University (Australia).
[13]  齐利芳, 李献杰, 郭维廉, 等. 多量子阱半导体环形激光器研究[C]//中国光学学会. 中国光学学会2010年光学大会论文集. 2010: 6.
[14]  Meng, F., Wang, M., Yu, H., Zhou, X., Yang, W., Chen, W., et al. (2020) A 1766 nm Micro-Ring Laser with InGaAs/InGaAsP Quantum Wells for Potential Gas Sensing. Asia Communications and Photonics Conference/International Conference on Information Photonics and Optical Communications 2020 (ACP/IPOC), Beijing, 24-27 October 2020.
https://doi.org/10.1364/acpc.2020.m4a.34

[15]  Michler, P., Kiraz, A., Becher, C., Schoenfeld, W.V., Petroff, P.M., Zhang, L., et al. (2000) A Quantum Dot Single-Photon Turnstile Device. Science, 290, 2282-2285.
https://doi.org/10.1126/science.290.5500.2282

[16]  Lebedev, D.V., Vlasov, A.S., Kulagina, M.M., Troshkov, S.I., Guseva, Y.A., Pelucchi, E., et al. (2018) Low Threshold Lasing in InP/GainP Quantum Dot Microdisks. Semiconductors, 52, 1894-1897.
https://doi.org/10.1134/s1063782618140166

[17]  Chen, Y., Mao, L., Guo, W., Zhang, S., Xie, S., Yu, J., et al. (2010) Optical Bistability in InP/InAlGaAs Multi-Quantum-Well Semiconductor Ring Lasers. SPIE Proceedings, 7844, 91-98.
https://doi.org/10.1117/12.869789

[18]  张定梅. 基于半导体环形激光器的混沌安全保密通信[J]. 光通信技术, 2020, 44(10): 37-41.
[19]  汤乾凤. 基于储备池计算的混沌同步及其保密通信研究[D]: [硕士学位论文]. 重庆: 西南大学, 2022.
[20]  于萍, 冯玉玲, 范健, 等. 半导体环形激光器输出混沌光的时延特征和带宽的研究[J]. 长春理工大学学报(自然科学版), 2023, 46(2): 1-9.
[21]  Shu, H., Chang, L., Lao, C., Shen, B., Xie, W., Zhang, X., et al. (2023) Submilliwatt, Widely Tunable Coherent Microcomb Generation with Feedback-Free Operation. Advanced Photonics, 5, Article ID: 036007.
https://doi.org/10.1117/1.ap.5.3.036007

[22]  Letsou, T.P., Kazakov, D., Ratra, P., et al. (2024) Lasing on Hybridized Soliton Frequency Combs. arXiv: 2408.09284/
[23]  Wang, S., Hong, K., Tsai, Y., Teng, C., Tzou, A., Chu, Y., et al. (2017) Wavelength Tunable InGaN/GaN Nano-Ring LEDs via Nano-Sphere Lithography. Scientific Reports, 7, Article No. 42962.
https://doi.org/10.1038/srep42962

[24]  Zhao, J., Li, Q., Tan, Q., Liang, T., Zhou, W., Liu, N., et al. (2024) Ring Geometric Effect on the Performance of Algan-Based Deep-Ultraviolet Light-Emitting Diodes. Optics Express, 32, 1275-1285.
https://doi.org/10.1364/oe.507455

[25]  Nie, M., Li, B., Jia, K., Xie, Y., Yan, J., Zhu, S., et al. (2022) Dissipative Soliton Generation and Real-Time Dynamics in Microresonator-Filtered Fiber Lasers. Light: Science & Applications, 11, Article No. 296.
https://doi.org/10.1038/s41377-022-00998-z

[26]  Boggio, J.M.C., Bodenmüller, D., Ahmed, S., Wabnitz, S., Modotto, D. and Hansson, T. (2022) Efficient Kerr Soliton Comb Generation in Micro-Resonator with Interferometric Back-Coupling. Nature Communications, 13, Article No. 1292.
https://doi.org/10.1038/s41467-022-28927-z

[27]  Xia, D., Yang, Z., Zeng, P., Zhang, B., Wu, J., Wang, Z., et al. (2022) Integrated Chalcogenide Photonics for Microresonator Soliton Combs. Laser & Photonics Reviews, 17, Article ID: 2200219.
https://doi.org/10.1002/lpor.202200219

[28]  Qin, B., Zhang, R., Qiu, B., Zhang, B. and Luo, C. (2024) Theoretical Analysis of Passively Mode-Locked Semiconductor Ring Lasers. Optics Express, 32, 24358-24371.
https://doi.org/10.1364/oe.523280

[29]  Grassani, D., Azzini, S., Liscidini, M., Galli, M., Strain, M.J., Sorel, M., et al. (2015) Micrometer-Scale Integrated Silicon Source of Time-Energy Entangled Photons. Optica, 2, 88-94.
https://doi.org/10.1364/optica.2.000088

[30]  Franson, J.D. (1989) Bell Inequality for Position and Time. Physical Review Letters, 62, 2205-2208.
https://doi.org/10.1103/physrevlett.62.2205

[31]  Xue, X., Zheng, X. and Zhou, B. (2019) Super-efficient Temporal Solitons in Mutually Coupled Optical Cavities. Nature Photonics, 13, 616-622.
https://doi.org/10.1038/s41566-019-0436-0

[32]  Feng, X., Lin, R., Yang, S., Xu, Y., Zhang, T., Chen, S., et al. (2023) Spatially Resolved Organic Whispering‐Gallery‐Mode Hetero‐Microrings for High‐security Photonic Barcodes. Angewandte Chemie International Edition, 62, e202310263.
https://doi.org/10.1002/anie.202310263
[33]  Opačak, N., Kazakov, D., Columbo, L.L., Beiser, M., Letsou, T.P., Pilat, F., et al. (2024) Nozaki-Bekki Solitons in Semiconductor Lasers. Nature, 625, 685-690.
https://doi.org/10.1038/s41586-023-06915-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133