全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

铀钼合金辐照位移级联的分子动力学模拟
Molecular Dynamics Simulations of Irradiation Displacement Cascades in U-Mo Alloys

DOI: 10.12677/ms.2025.151018, PP. 149-159

Keywords: 铀钼合金,中子辐照,初级辐照损伤,分子动力学
Uranium-Molybdenum Alloy
, Neutron Irradiation, Primary Irradiation Damage, Molecular Dynamics

Full-Text   Cite this paper   Add to My Lib

Abstract:

U-Mo金属型核燃料因为其高铀含量和高热导率等优点,被认为是一种有潜力的新型核燃料,其辐照肿胀行为尚需进行深入研究。本文通过分子动力学模拟研究了γ-U-Mo合金中的位移级联。详细分析了级联过程。评估了初级离位原子(PKA)的初始方向和PKA能量对最终损伤状态的影响。结果表明,PKA的方向对最终的初级损伤状态没有影响。大多数缺陷团簇的大小不超过3,随着PKA能量的增加,产生较大间隙团簇和空位团簇的概率也会增加。尺寸大于3的团簇中的Mo间隙原子和孤立的Mo间隙原子所占的比例很低。
The irradiated swelling behavior of U-Mo metal-based nuclear fuel, which is considered as a potential new nuclear fuel because of its high uranium content and high thermal conductivity, has yet to be studied in depth. In this paper, displacement cascades in γ-U-Mo alloys are investigated by molecular dynamics simulations. The cascade process is analyzed in detail. The effects of the initial orientation of the primary delocalized atoms (PKA) and the PKA energy on the final damage state were evaluated. The results show that the orientation of PKA has no effect on the final primary damage state. The size of most defect clusters does not exceed 3, and the probability of producing larger gap clusters and vacancy clusters increases with increasing PKA energy. The proportion of Mo interstitial atoms and isolated Mo interstitial atoms in clusters with sizes larger than 3 is low.

References

[1]  Zhou, Y.R., Ying, H., Ren, C.L., et al. (2024) Molecular Dynamics Simulation of Defect Evolution in Titanium Metal Irradiation Cascade Process. Atomic Energy Science and Technology, 58, 1523-1531.
[2]  You, H., Ou, X., Ai, J., Ma, T. and Tian, X. (2025) The Effect of Grain Boundary on Irradiation Tolerance of U-Mo Alloy: Defect Evolution and Mechanical Properties. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 558, Article ID: 165561.
https://doi.org/10.1016/j.nimb.2024.165561

[3]  Schulthess, J.L., Baird, K., Petersen, P., Salvato, D., Ozaltun, H., Hanson, W.A., et al. (2024) Mechanical Properties of Irradiated U-10 Wt. %mo Alloy Degraded by Porosity Development. Journal of Nuclear Engineering and Radiation Science, 10, Article ID: 031601.
https://doi.org/10.1115/1.4064779

[4]  Ying, H., Wen, A.L., Zhou, T.R., et al. (2023) Molecular Dynamics of Primary Irradiation Damage Evolution in Metallic Nickel, Iron and Tungsten. Nuclear Technology, 46, 38-48.
[5]  Nordlund, K. (2019) Historical Review of Computer Simulation of Radiation Effects in Materials. Journal of Nuclear Materials, 520, 273-295.
https://doi.org/10.1016/j.jnucmat.2019.04.028

[6]  Smirnova, D.E., Kuksin, A.Y., Starikov, S.V., Stegailov, V.V., Insepov, Z., Rest, J., et al. (2013) A Ternary EAM Interatomic Potential for U-Mo Alloys with Xenon. Modelling and Simulation in Materials Science and Engineering, 21, Article ID: 035011.
https://doi.org/10.1088/0965-0393/21/3/035011

[7]  Ouyang, W., Lai, W., Li, J., Liu, J. and Liu, B. (2021) Atomic Simulations of U-Mo under Irradiation: A New Angular Dependent Potential. Metals, 11, Article 1018.
https://doi.org/10.3390/met11071018

[8]  Ma, X.L. (2020) Molecular Dynamics Simulation of Spatial Irradiation Damage in GaAs Materials. Master’s Thesis, Beijing Jiaotong University.
[9]  Li, J.W. (2020) Research on the Organizational Properties of Rare Earth Permanent Magnet Material under Irradiation/High Temperature Conditions. Master’s Thesis, Harbin Institute of Technology.
[10]  Li, J. (2022) Molecular Dynamics Simulation of Irradiation Resistance of NiFe Single-Phase Concentrated Solid Solution Alloy. Master’s Thesis, Huazhong University of Science and Technology.
[11]  Zhang, J. and Zhang, S. (2017) Molecular Dynamics Simulation of Thermal Conductivity of Nanocrystalline Cu-Ag Bimodal Alloy Materials. Functional Materials, 48, 10017-10023.
[12]  Cao, H., He, X.F., Wang, D.J., et al. (2019) Molecular Dynamics Simulation of Cascade Collisions in α-Fe at Different Temperatures. Atomic Energy Science and Technology, 53, 487-493.
[13]  Mason, D.R., Nguyen-Manh, D. and Becquart, C.S. (2017) An Empirical Potential for Simulating Vacancy Clusters in Tungsten. Journal of Physics: Condensed Matter, 29, Article ID: 505501.
https://doi.org/10.1088/1361-648x/aa9776

[14]  Yang, C. and Qi, L. (2019) Modified Embedded-Atom Method Potential of Niobium for Studies on Mechanical Properties. Computational Materials Science, 161, 351-363.
https://doi.org/10.1016/j.commatsci.2019.01.047

[15]  Starikov, S., Smirnova, D., Pradhan, T., Lysogorskiy, Y., Chapman, H., Mrovec, M., et al. (2021) Angular-Dependent Interatomic Potential for Large-Scale Atomistic Simulation of Iron: Development and Comprehensive Comparison with Existing Interatomic Models. Physical Review Materials, 5, Article ID: 063607.
https://doi.org/10.1103/physrevmaterials.5.063607

[16]  Beeler, B., Good, B., Rashkeev, S., Deo, C., Baskes, M. and Okuniewski, M. (2010) First Principles Calculations for Defects in U. Journal of Physics: Condensed Matter, 22, Article ID: 505703.
https://doi.org/10.1088/0953-8984/22/50/505703

[17]  Beeler, B., Deo, C., Baskes, M. and Okuniewski, M. (2012) Atomistic Properties of Γ Uranium. Journal of Physics: Condensed Matter, 24, Article ID: 075401.
https://doi.org/10.1088/0953-8984/24/7/075401

[18]  Xiang, S., Huang, H. and Hsiung, L.M. (2008) Quantum Mechanical Calculations of Uranium Phases and Niobium Defects in Γ-uranium. Journal of Nuclear Materials, 375, 113-119.
https://doi.org/10.1016/j.jnucmat.2007.11.003

[19]  Smirnova, D.E., Starikov, S.V. and Stegailov, V.V. (2011) Interatomic Potential for Uranium in a Wide Range of Pressures and Temperatures. Journal of Physics: Condensed Matter, 24, Article ID: 015702.
https://doi.org/10.1088/0953-8984/24/1/015702

[20]  Matter, H., Winter, J. and Triftshäuser, W. (1980) Investigation of Vacancy Formation and Phase Transformations in Uranium by Positron Annihilation. Journal of Nuclear Materials, 88, 273-278.
https://doi.org/10.1016/0022-3115(80)90283-4

[21]  Jiang, M., Gong, H., Zhou, B., Xiao, H., Zhang, H., Liu, Z., et al. (2020) An AIMD + U Simulation of Low-Energy Displacement Events in UO2. Journal of Nuclear Materials, 540, Article ID: 152379.
https://doi.org/10.1016/j.jnucmat.2020.152379

[22]  Björkas, C., Nordlund, K., Malerba, L., Terentyev, D. and Olsson, P. (2008) Simulation of Displacement Cascades in Fe90Cr10 Using a Two Band Model Potential. Journal of Nuclear Materials, 372, 312-317.
https://doi.org/10.1016/j.jnucmat.2007.03.265

[23]  Jin, M., Gao, Y., Jiang, C. and Gan, J. (2021) Defect Dynamics in γ-U, Mo, and Their Alloys. Journal of Nuclear Materials, 549, Article ID: 152893.
https://doi.org/10.1016/j.jnucmat.2021.152893

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133