全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有优良性能的三维多孔Zn/Si双掺杂Al(PO3)3涂层负载的Na3V2(PO4)3/C钠离子电池
Zn/Si-Dual-Doped Al(PO3)3-Coated Na3V2(PO4)3/C with 3D Porous Structure Boosting High Performance for Sodium Ion Batteries

DOI: 10.12677/ms.2025.151017, PP. 140-148

Keywords: Na3V2(PO4)3,Zn/Si共掺杂,表面改性,高倍率性能,长循环寿命
Na3V2(PO4)3
, Zn/Si Co-Doping, Surface Modification, High-Rate Performance, Long Cycle Life

Full-Text   Cite this paper   Add to My Lib

Abstract:

Na3V2(PO4)3 (NVP)作为一种多正离子正极材料,在储能领域展现出巨大的潜力。然而,由于其内在导电性差和严重的结构退化,其应用受到了限制。在本研究中,我们采用球磨和煅烧技术的协同混合,制造出了一种Zn/Si双掺杂NVP正极材料(Na3V1.96Zn0.04(PO4)2.9(SiO4)0.1/C)。此外,这种材料的表面还通过湿法工艺附着了一层热稳定的Al(PO3)3层。多孔Na3V1.96Zn0.04(PO4)2.9(SiO4)0.1/C@Al(PO3)3正极表现出卓越的稳定性,即使在5C的倍率下循环1000次,容量仍能保持90.8%。此外,在10 C和20 C的较高倍率下,正极的初始容量分别达到94.1 mAh·g?1和84.89 mAh·g?1,而在2000次循环后,其容量分别保持在86.19 mAh·g?1和76.54 mAh·g?1。通过Zn/Si共掺杂显著提高了电池的低倍率性能,并且通过Al(PO3)3改性显著提高了电池的高倍率性能。多孔Na3V1.96Zn0.04(PO4)2.9(SiO4)0.1/C@Al(PO3)3材料表现出较强的倍率性能和显著的循环稳定性,突出了其在高性能储能应用方面的巨大潜力。因此,本研究提出了一种通过表面改性和双掺杂技术来提高电化学性能的特殊方法。
Na3V2(PO4)3 (NVP) demonstrates great potential as a polyanionic cathode material in the field of energy storage. However, its application is constrained by its poor intrinsic conductivity and severe structural degradation. In this study, we fabricate a Zn/Si-dual-doped NVP cathode material (Na3V1.96Zn0.04(PO4)2.9(SiO4)0.1/C) employing a synergistic blend of ball milling and calcination techniques. Additionally, the surface of this material is adhered with a heat-stabilized Al(PO3)3 layer through a wet process. The porous Na3V1.96Zn0.04(PO4)2.9(SiO4)0.1/C@Al(PO3)3 cathode exhibits exceptional stability, retaining a capacity of 90.8% even after 1000 cycles at 5C. Moreover, at the higher rates of 10 C and 20 C, the cathode achieves initial capacities of 94.1 and 84.89 mAh?g1, respectively, while maintaining 86.19 and 76.54 mAh?g1 after 2000 cycles. The incorporation of Zn/Si co-doping significantly enhances the battery’s low-rate performance, while the modification with Al(PO3)3 conspicuously improves its high-rate performance. The porous

References

[1]  Criado, A., Lavela, P., Tirado, J.L. and Pérez-Vicente, C. (2020) Increasing Energy Density with Capacity Preservation by Aluminum Substitution in Sodium Vanadium Phosphate. ACS Applied Materials & Interfaces, 12, 21651-21660.
https://doi.org/10.1021/acsami.0c03396

[2]  Li, P., Gao, M., Wang, D., Li, Z., Liu, Y., Liu, X., et al. (2023) Optimizing Vanadium Redox Reaction in Na3V2(PO4)3 Cathodes for Sodium-Ion Batteries by the Synergistic Effect of Additional Electrons from Heteroatoms. ACS Applied Materials & Interfaces, 15, 9475-9485.
https://doi.org/10.1021/acsami.2c22038

[3]  Cheng, J., Chen, Y., Wang, Y., Wang, C., He, Z., Li, D., et al. (2020) Insights into the Enhanced Sodium Storage Property and Kinetics Based on the Zr/Si Codoped Na3V2(PO4)3/C Cathode with Superior Rate Capability and Long Lifespan. Journal of Power Sources, 474, Article ID: 228632.
https://doi.org/10.1016/j.jpowsour.2020.228632

[4]  Lim, S.Y., Kim, H., Shakoor, R.A., Jung, Y. and Choi, J.W. (2012) Electrochemical and Thermal Properties of NASICON Structured Na3V2(PO4)3 as a Sodium Rechargeable Battery Cathode: A Combined Experimental and Theoretical Study. Journal of The Electrochemical Society, 159, A1393-A1397.
https://doi.org/10.1149/2.015209jes

[5]  Xu, C., Xiao, R., Zhao, J., Ding, F., Yang, Y., Rong, X., et al. (2021) Mn-Rich Phosphate Cathodes for Na-Ion Batteries with Superior Rate Performance. ACS Energy Letters, 7, 97-107.
https://doi.org/10.1021/acsenergylett.1c02107

[6]  Cao, X., Pan, A., Yin, B., Fang, G., Wang, Y., Kong, X., et al. (2019) Nanoflake-Constructed Porous Na3V2(PO4)3/c Hierarchical Microspheres as a Bicontinuous Cathode for Sodium-Ion Batteries Applications. Nano Energy, 60, 312-323.
https://doi.org/10.1016/j.nanoen.2019.03.066

[7]  Li, W., Yao, Z., Zhou, C., Wang, X., Xia, X., Gu, C., et al. (2019) Boosting High‐Rate Sodium Storage Performance of N‐Doped Carbon‐Encapsulated Na3V2(PO4)3 Nanoparticles Anchoring on Carbon Cloth. Small, 15, Article ID: 1902432.
https://doi.org/10.1002/smll.201902432

[8]  Wang, M., Guo, J., Wang, Z., Gu, Z., Nie, X., Yang, X., et al. (2020) Isostructural and Multivalent Anion Substitution toward Improved Phosphate Cathode Materials for Sodium‐Ion Batteries. Small, 16, Article ID: 1907645.
https://doi.org/10.1002/smll.201907645

[9]  Ma, H., Zhao, B., Bai, J., Li, K., Fang, Z., Wang, P., et al. (2020) Improved Electrochemical Performance of Na3V2xZrx(PO4)3/c through Electronic and Ionic Conductivities Regulation. Journal of The Electrochemical Society, 167, Article ID: 070548.
https://doi.org/10.1149/1945-7111/ab812b

[10]  Li, H., Yu, X., Bai, Y., Wu, F., Wu, C., Liu, L., et al. (2015) Effects of Mg Doping on the Remarkably Enhanced Electrochemical Performance of Na3V2(PO4)3 Cathode Materials for Sodium Ion Batteries. Journal of Materials Chemistry A, 3, 9578-9586.
https://doi.org/10.1039/c5ta00277j

[11]  Song, W., Ji, X., Wu, Z., Yang, Y., Zhou, Z., Li, F., et al. (2014) Exploration of Ion Migration Mechanism and Diffusion Capability for Na3V2(PO4)2F3 Cathode Utilized in Rechargeable Sodium-Ion Batteries. Journal of Power Sources, 256, 258-263.
https://doi.org/10.1016/j.jpowsour.2014.01.025

[12]  Wang, F., Luo, Y., Liu, P., Balogun, M., Deng, J. and Wang, Z. (2022) Improved Cycling Performance and High Rate Capacity of LiNi0.8Co0.1Mn0.1O2 Cathode Achieved by Al(PO3)3 Modification via Dry Coating Ball Milling. Coatings, 12, Article No. 319.
https://doi.org/10.3390/coatings12030319

[13]  Zhang, Y., Pei, Y., Liu, W., Zhang, S., Xie, J., Xia, J., et al. (2020) AlPO4-Coated P2-Type Hexagonal Na0.7MnO2.05 as High Stability Cathode for Sodium Ion Battery. Chemical Engineering Journal, 382, Article ID: 122697.
https://doi.org/10.1016/j.cej.2019.122697

[14]  Wang, K., Huang, X., Luo, C., Shen, Y., Wang, H. and Zhou, T. (2023) Boosting Cycling Stability through Al(PO3)3 Loading in a Na4MnV(PO4)3/c Cathode for High-Performance Sodium-Ion Batteries. Journal of Colloid and Interface Science, 642, 705-713.
https://doi.org/10.1016/j.jcis.2023.04.006

[15]  Song, J., Wang, Y., Feng, Z., Zhang, X., Wang, K., Gu, H., et al. (2018) Investigation on the Electrochemical Properties and Stabilized Surface/Interface of NanO-AlPO4-Coated Li1.15Ni0.17Co0.11Mn0.57O2 as the Cathode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 10, 27326-27332.
https://doi.org/10.1021/acsami.8b06670

[16]  Aragón, M.J., Lavela, P., Ortiz, G.F., Alcántara, R. and Tirado, J.L. (2017) On the Effect of Silicon Substitution in Na3V2(PO4)3 on the Electrochemical Behavior as Cathode for Sodium‐Ion Batteries. ChemElectroChem, 5, 367-374.
https://doi.org/10.1002/celc.201700933

[17]  Pal, S.K., Thirupathi, R., Chakrabarty, S. and Omar, S. (2020) Improving the Electrochemical Performance of Na3V2(PO4)3 Cathode in Na-Ion Batteries by Si-Doping. ACS Applied Energy Materials, 3, 12054-12065.
https://doi.org/10.1021/acsaem.0c02188

[18]  Ko, J.S., Paul, P.P., Wan, G., Seitzman, N., DeBlock, R.H., Dunn, B.S., et al. (2020) NASICON Na3V2(PO4)3 Enables Quasi-Two-Stage Na+ and Zn2+ Intercalation for Multivalent Zinc Batteries. Chemistry of Materials, 32, 3028-3035.
https://doi.org/10.1021/acs.chemmater.0c00004

[19]  Chen, Y., Tian, Z., Li, J. and Zhou, T. (2023) In-Situ Constructing Pearl Necklace-Shaped Heterostructure: Zn2+ Substituted Na3V2(PO4)3 Attached on Carbon Nano Fibers with High Performance for Half and Full Na Ion Cells. Chemical Engineering Journal, 472, Article ID: 145041.
https://doi.org/10.1016/j.cej.2023.145041

[20]  Shen, W., Li, H., Guo, Z., Wang, C., Li, Z., Xu, Q., et al. (2016) Double-Nanocarbon Synergistically Modified Na3V2(PO4)3: An Advanced Cathode for High-Rate and Long-Life Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 8, 15341-15351.
https://doi.org/10.1021/acsami.6b03410

[21]  Ni, Q., Bai, Y., Li, Y., Ling, L., Li, L., Chen, G., et al. (2018) 3D Electronic Channels Wrapped Large‐Sized Na3V2(PO4)3 as Flexible Electrode for Sodium‐Ion Batteries. Small, 14, Article ID: 1702864.
https://doi.org/10.1002/smll.201702864

[22]  Hu, P., Zou, Z., Sun, X., Wang, D., Ma, J., Kong, Q., et al. (2020) Uncovering the Potential of M1‐Site‐Activated NASICON Cathodes for Zn‐Ion Batteries. Advanced Materials, 32, Article ID: 1907526.
https://doi.org/10.1002/adma.201907526

[23]  Feng, Z., Rajagopalan, R., Sun, D., Tang, Y. and Wang, H. (2020) In-Situ Formation of Hybrid Li3PO4-AlPO4-Al(PO3)3 Coating Layer on LiNi0.8Co0.1Mn0.1O2 Cathode with Enhanced Electrochemical Properties for Lithium-Ion Battery. Chemical Engineering Journal, 382, Article ID: 122959.
https://doi.org/10.1016/j.cej.2019.122959

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133