|
Pure Mathematics 2025
基于改进的ISOMAP降维和改进的SAM高光谱图像分类
|
Abstract:
随着模式识别、机器学习、遥感技术等相关学科领域的发展,高光谱遥感影像分类研究取得了快速进展。高光谱影像具有高维度和高相关性,导致“维度灾难”。而高光谱降维的手段主要分为波段选择和波段提取。流形学习作为一种波段提取方法,在高光谱数据降维和分类中已被广泛使用。本文提出一种改进的ISOMAP降维和改进的SAM,并用Salinas-A数据集对比SAM直接分类和PCA降维后SAM分类(PCA-SAM)。比较了分类后整体和每个类别的精确度,发现新提出的算法在整体精确度都要高于SAM和PCA-SAM,并且发现在个别类别的精确度上有很大的提高。
With the development of related disciplines such as pattern recognition, machine learning, and remote sensing technology, research on the classification of hyperspectral remote sensing images has achieved rapid progress. Hyperspectral images have high dimensionality and high correlation, resulting in the “curse of dimensionality”. The methods for hyperspectral dimensionality reduction are mainly divided into band selection and band extraction. Manifold learning, as a feature extraction method, has been widely used in hyperspectral data dimensionality reduction and classification. This paper proposes an improved ISOMAP dimensionality reduction and an improved SAM, and compares the direct classification of SAM with the classification of SAM after PCA dimensionality reduction (PCA-SAM) using the Salinas-A dataset. The overall accuracy and the accuracy of each category after classification are compared. It is found that the newly proposed algorithm has higher overall accuracy than both SAM and PCA-SAM, and significant improvements in accuracy are observed in individual categories.
[1] | Fauvel, M., Tarabalka, Y., Benediktsson, J.A., Chanussot, J. and Tilton, J.C. (2013) Advances in Spectral-Spatial Classification of Hyperspectral Images. Proceedings of the IEEE, 101, 652-675. https://doi.org/10.1109/jproc.2012.2197589 |
[2] | 苏红军, 高光谱遥感影像降维: 进展、挑战与展望[J]. 遥感学报, 2022, 26(8): 1504-1529. |
[3] | 杜培军, 夏俊士, 薛朝辉, 等. 高光谱遥感影像分类研究进展[J]. 遥感学报, 2016, 20(2): 236-256. |
[4] | Jia, X., Kuo, B. and Crawford, M.M. (2013) Feature Mining for Hyperspectral Image Classification. Proceedings of the IEEE, 101, 676-697. https://doi.org/10.1109/jproc.2012.2229082 |
[5] | Li, X., Li, Z., Qiu, H., Hou, G. and Fan, P. (2021) An Overview of Hyperspectral Image Feature Extraction, Classification Methods and the Methods Based on Small Samples. Applied Spectroscopy Reviews, 58, 367-400. https://doi.org/10.1080/05704928.2021.1999252 |
[6] | 王自强, 钱旭, 孔敏. 流形学习算法综述[J]. 计算机工程与应用, 2008, 44(35): 9-12+24. |
[7] | Dong, G.J., Zhang, Y.S. and Ji, S. (2007) Dimensionality Reduction of Hyperspectral Data Based on ISOMAP Algorithm. 2007 8th International Conference on Electronic Measurement and Instruments, Xi’an, 16-18 August 2007, 3-935-3-3938. https://doi.org/10.1109/icemi.2007.4351072 |
[8] | 杜培军, 王小美, 谭琨, 等. 利用流形学习进行高光谱遥感影像的降维与特征提取[J]. 武汉大学学报(信息科学版), 2011, 36(2): 148-152. |
[9] | Song, W., Zhang, X., Yang, G., Chen, Y., Wang, L. and Xu, H. (2024) A Study on Dimensionality Reduction and Parameters for Hyperspectral Imagery Based on Manifold Learning. Sensors, 24, Article 2089. https://doi.org/10.3390/s24072089 |