全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于分子间自由基加成/迁移/环化策略的炔烃碳环化反应的研究
Research on Alkyne Carbon Cyclization Reactions Based on Intermolecular Radical Addition/Translocation/Cyclization (RATC) Strategy

DOI: 10.12677/jocr.2025.131001, PP. 1-12

Keywords: RATC,氢原子转移,环加成,炔烃
RATC
, Hydrogen Atom Transfer, Cycloaddition, Alkynes

Full-Text   Cite this paper   Add to My Lib

Abstract:

碳环构筑在药物与功能材料合成中至关重要,炔烃广泛应用于环合反应,但碳环合成仍具挑战。因此,新型炔烃碳环化策略成为研究热点,其中RATC策略为碳环构筑提供了新思路。本文介绍了RATC反应的研究进展,分子内RATC反应如Heiba等多取代环戊烷制备、刘心元等6(5)-6-5稠环构建及Studer等1-三氟甲基炔丙基环戊烷合成。随后,文章探讨分子间RATC策略,介绍了李金恒等以1,4-二氧六环为自由基前体的Inter-RATC反应和张国柱等通过Inter-RATC构建环丁烷的反应,尽管存在局限性,但它们为碳环构筑提供了新方法。
The construction of carbon rings is crucial in the synthesis of pharmaceuticals and functional materials. Alkynes are widely used in cyclization reactions, yet the synthesis of carbon rings remains challenging. Therefore, novel alkyne carbon cyclization strategies have become a research hotspot, among which the RATC strategy offers new insights into carbon ring construction. This article introduces the research progress of RATC reactions, focusing on intramolecular RATC reactions such as the preparation of multisubstituted cyclopentanes by Heiba et al., the construction of 6(5)-6-5 fused rings by Liu et al. and the synthesis of 1-trifluoromethylallylcyclopentanes by Studer et al. Subsequently, the article explores intermolecular RATC strategies, presenting the Inter-RATC reaction using 1,4-dioxane as a radical precursor by Li et al. and the construction of cyclobutanes through Inter-RATC by Zhang et al. Despite their limitations, these strategies provide novel methods for carbon ring construction.

References

[1]  Cao, H., Chen, F., Su, C. and Yu, L. (2019) Construction of Carbocycles from Methylenecyclopropanes. Advanced Synthesis & Catalysis, 362, 438-461.
https://doi.org/10.1002/adsc.201900615
[2]  Duarah, G., Kaishap, P.P., Begum, T. and Gogoi, S. (2018) Recent Advances in Ruthenium (II)-Catalyzed C-H Bond Activation and Alkyne Annulation Reactions. Advanced Synthesis & Catalysis, 361, 654-672.
https://doi.org/10.1002/adsc.201800755
[3]  Zhang, L., Yuan, S., Wang, P. and Liu, J. (2020) Recent Advances in Cyclization Reaction of Alkynes under Transition Metal-Free Conditions. Chinese Journal of Organic Chemistry, 40, 1529-1539.
https://doi.org/10.6023/cjoc201912029
[4]  Heiba, E.I. and Dessau, R.M. (1967) Free-Radical Isomerization. I. Novel Rearrangement of Vinyl Radicals. Journal of the American Chemical Society, 89, 3772-3777.
https://doi.org/10.1021/ja00991a017
[5]  Curran, D.P., Kim, D., Liu, H.T. and Shen, W. (1988) Translocation of Radical Sites by Intramolecular 1,5-Hydrogen Atom Transfer. Journal of the American Chemical Society, 110, 5900-5902.
https://doi.org/10.1021/ja00225a052
[6]  Huang, L., Ye, L., Li, X., Li, Z., Lin, J. and Liu, X. (2016) Stereoselective Radical Cyclization Cascades Triggered by Addition of Diverse Radicals to Alkynes to Construct 6(5)-6-5 Fused Rings. Organic Letters, 18, 5284-5287.
https://doi.org/10.1021/acs.orglett.6b02599
[7]  Yang, Y., Daniliuc, C.G. and Studer, A. (2020) 1,1,2-Trifunctionalization of Terminal Alkynes by Radical Addition-Translocation-Cyclization-Trapping for the Construction of Highly Substituted Cyclopentanes. Angewandte Chemie International Edition, 60, 2145-2148.
https://doi.org/10.1002/anie.202011785
[8]  Zhou, Y., Qin, Y., Wang, Q., Zhang, Z. and Zhu, G. (2021) Photocatalytic Sulfonylcarbocyclization of Alkynes Using SEt as a Traceless Directing Group: Access to Cyclopentenes and Indenes. Angewandte Chemie International Edition, 61, e202110864.
https://doi.org/10.1002/anie.202110864
[9]  Le, S., Bai, Y., Qiu, J., Zhang, Z., Zheng, H. and Zhu, G. (2022) Access to Cyclopentenones via Copper-Catalyzed 5-Endo Trifluoromethylcarbocyclization of Ynones. Organic Chemistry Frontiers, 9, 4670-4675.
https://doi.org/10.1039/d2qo00843b
[10]  Qiu, J., Le, S., Su, J., Liu, Y., Zhou, Y., Zheng, H., et al. (2022) A Diastereoselective Synthesis of Cyclopentanones via Photocatalytic Reductive Alkyltrifluoromethylation of Ynones. Organic Chemistry Frontiers, 9, 5523-5529.
https://doi.org/10.1039/d2qo01101h
[11]  Su, J., Guo, W., Liu, Y., Kong, L., Zheng, H. and Zhu, G. (2023) Cu-Catalyzed Cascade Difluoroalkylation/5-Endo Cyclization/β-Fluorine Cleavage of Ynones. Chemical Communications, 59, 1821-1824.
https://doi.org/10.1039/d2cc06068j
[12]  Su, J., Xu, J., Gu, Z., Zhou, Y., Zheng, H. and Zhu, G. (2023) Construction of Difluoroalkylated Cyclopentenones through Photocatalytic Difluoroalkylative 5-Endo Cyclization Cascades of Ynones. European Journal of Organic Chemistry, 26, e202300432.
https://doi.org/10.1002/ejoc.202300432
[13]  Lachia, M., Dénès, F., Beaufils, F. and Renaud, P. (2005) Highly Diastereoselective Formation of Spirocyclic Compounds via 1,5-Hydrogen Transfer: A Total Synthesis of Erythrodiene. Organic Letters, 7, 4103-4106.
https://doi.org/10.1021/ol051426r
[14]  Clive, D.L.J. and Ardelean, E. (2001) Synthesis of (+)-Juruenolide C: Use of Sequential 5-Exo-Digonal Radical Cyclization, 1,5-Intramolecular Hydrogen Transfer, and 5-Endo-Trigonal Cyclization. The Journal of Organic Chemistry, 66, 4841-4844.
https://doi.org/10.1021/jo010206y
[15]  Baldwin, J.E., Cutting, J., Dupont, W., Kruse, L., Silberman, L. and Thomas, R.C. (1976) 5-Endo-Trigonal Reactions: A Disfavoured Ring Closure. Journal of the Chemical Society, Chemical Communications, 1976, 736-738.
https://doi.org/10.1039/c39760000736
[16]  Hu, M., Song, R., Ouyang, X., Tan, F., Wei, W. and Li, J. (2016) Copper-Catalyzed Oxidative [2+2+1] Annulation of 1, n-Enynes with Α-Carbonyl Alkyl Bromides through C-Br/C-H Functionalization. Chemical Communications, 52, 3328-3331.
https://doi.org/10.1039/c5cc10132h
[17]  Jiang, B., Li, J., Pan, Y., Hao, W., Li, G. and Tu, S. (2017) Radical-Enabled Bicyclization Cascades of Oxygen-Tethered 1,7-Enynes Leading to Skeletally Diverse Polycyclic Chromen-2-Ones. Chinese Journal of Chemistry, 35, 323-334.
https://doi.org/10.1002/cjoc.201600571
[18]  Li, Y., Liu, B., Song, R., Wang, Q. and Li, J. (2016) Visible Light-Initiated C(sp3)-Br/C(sp3)-Functionalization of Α-Carbonyl Alkyl Bromides through Hydride Radical Shift. Advanced Synthesis & Catalysis, 358, 1219-1228.
https://doi.org/10.1002/adsc.201501134
[19]  Gao, F., Yang, C., Ma, N., Gao, G., Li, D. and Xia, W. (2016) Visible-Light-Mediated 1,7-Enyne Bicyclizations for Synthesis of Cyclopenta[c]quinolines and Benzo[j]phenanthridines. Organic Letters, 18, 600-603.
https://doi.org/10.1021/acs.orglett.5b03662
[20]  Jiao, M., Liu, D., Hu, X. and Xu, P. (2019) Photocatalytic Decarboxylative [2+2+1] Annulation of 1,6-Enynes with n-Hydroxyphthalimide Esters for the Synthesis of Indene-Containing Polycyclic Compounds. Organic Chemistry Frontiers, 6, 3834-3838.
https://doi.org/10.1039/c9qo01166h
[21]  Yu, J., Teng, F., Xiang, J., Deng, W. and Li, J. (2019) One-Carbon Incorporation Using Cyclobutanone Oxime Ester Enabled [2+2+1] Carboannulation of 1,7-Enynes by C-C/N-O Bond Cleavage and C-H Functionalization. Organic Letters, 21, 9434-9437.
https://doi.org/10.1021/acs.orglett.9b03643
[22]  Correia, J.T.M., Piva da Silva, G., André, E. and Paixão, M.W. (2019) Photoredox Decarboxylative Alkylation/(2+2+1) Cycloaddition of 1,7-Enynes: A Cascade Approach towards Polycyclic Heterocycles Using n-(Acyloxy)phthalimides as Radical Source. Advanced Synthesis & Catalysis, 361, 5558-5564.
https://doi.org/10.1002/adsc.201900657
[23]  Qu, Y., Xu, W., Zhang, J., Liu, Y., Li, Y., Song, H., et al. (2020) Visible-Light-Mediated [2+2+1] Carbocyclization Reactions of 1,7-Enynes with Bromofluoroacetate to Form Fused Monofluorinated Cyclopenta[c]quinolin-4-Ones. The Journal of Organic Chemistry, 85, 5379-5389.
https://doi.org/10.1021/acs.joc.0c00087
[24]  Cao, Z., Li, J. and Zhang, G. (2021) Photo-Induced Copper-Catalyzed Sequential 1, n-Hat Enabling the Formation of Cyclobutanols. Nature Communications, 12, Article No. 6404.
https://doi.org/10.1038/s41467-021-26670-5
[25]  Le, S., Li, J., Feng, J., Zhang, Z., Bai, Y., Yuan, Z., et al. (2022) [3+2] Cycloaddition of Alkyl Aldehydes and Alkynes Enabled by Photoinduced Hydrogen Atom Transfer. Nature Communications, 13, Article No. 4734.
https://doi.org/10.1038/s41467-022-32467-x
[26]  Masuda, Y., Ikeshita, D., Higashida, K., Yoshida, M., Ishida, N., Murakami, M., et al. (2023) Photocatalytic 1,2-Phosphorus-Migrative [3 +2] Cycloaddition of Tri(t-Butyl)phosphine with Terminal Alkynes. Journal of the American Chemical Society, 145, 19060-19066.
https://doi.org/10.1021/jacs.3c06760

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133