|
Mine Engineering 2025
三分量背景噪声成像在当涂某地区浅地表勘探中的应用
|
Abstract:
随着我国现代化进程的加快,城市地下空间的合理利用变得尤为重要。然而,传统的工程物探方法诸如重力调查、钻井和电磁探测技术等易受到人口和环境的限制,在城镇地区难以施展。在这种环境下,背景噪声成像作为一种安全、高效、对环境无损的工程物探方法,在浅地表勘探中被广泛应用。由于单分量检波器只能采集垂向分量的地震记录,以往大部分对背景噪声的研究主要集中在利用垂直分量地震数据提取瑞雷波进行频散成像,这容易导致频散成像的频带范围受限且高阶模态下易受到“模式接吻”的干扰进而影响成像精度。本文通过利用三分量检波器布置线性密集阵列采集当涂某地区的背景噪声数据,分析该地区三分量背景噪声的频谱特征。随后使用地震干涉法处理获取高质量的虚拟炮集记录,并进行频散分析提取瑞雷波与勒夫波的频散曲线进行联合反演成像。通过瑞雷波频散曲线单独反演与瑞雷波、勒夫波频散曲线联合反演比较可以看出,联合反演得到的速度剖面与测井结果具有更好的对应关系。这证明了与单一反演瑞雷波频散曲线相比,联合反演瑞雷波频散曲线和勒夫波频散曲线可以有效地提高反演精度并减少非唯一性。
With the speeding up of modernization in China, the rational utilization of urban underground space becomes particularly important. However, traditional engineering geophysical exploration methods such as gravity survey, drilling and electromagnetic detection technology are easy to be limited by population and environment and can not be applied in urban areas. In this environment, background noise imaging is widely used in shallow surface exploration as a safe, efficient and non-destructive engineering geophysical exploration method. Since single-component geophone can only collect vertical seismic records, most previous research on background noise mainly focuses on extracting Rayleigh waves from vertical seismic data for dispersion imaging, which is easy to lead to the limited frequency band of dispersion imaging and the interference of “mode kissing” in high-order modes, thus affecting the imaging accuracy. In this paper, a linear dense array of three-component detector is used to collect the background noise data of a certain area in Dangtu, and the spectral characteristics of the three-component background noise in this area are analyzed. Then, the high-quality virtual gun set records are obtained by seismic interferometry, and the dispersion curves of Rayleigh wave and Love wave are extracted by parallel dispersion analysis for joint inversion imaging. By comparing the Rayleigh wave dispersion curve inversion with the Rayleigh wave and Love wave dispersion curve inversion, it can be seen that the velocity profile obtained by the joint inversion has a better correspondence with the logging results. It is proved that, compared with single inversion of Rayleigh wave dispersion curve, the joint inversion of Rayleigh wave dispersion curve and Love wave dispersion curve can effectively improve the inversion accuracy and reduce the non-uniqueness.
[1] | 罗国平. 重力勘探在城市区地热调查中的应用[J]. 中国煤田地质, 2000, 12(4): 68-70. |
[2] | 苏永军, 胡婷, 曹占宁, 等. 基于高密度电阻率法的雄安新区填埋坑塘探测效果分析[J]. 华北地质, 2023, 46(4): 70-75. |
[3] | 王光文, 王海燕, 李洪强, 等. 面波勘探技术的研究现状及进展[J]. 地球科学前沿, 2019, 9(9): 799-815. |
[4] | Park, C.B., Miller, R.D. and Xia, J. (1998) Imaging Dispersion Curves of Surface Waves on Multi‐Channel Record. 68th Annual International Meeting, SEG, Expanded Abstracts, Society of Exploration Geophysicists, 1377-1380. https://doi.org/10.1190/1.1820161 |
[5] | Aki, K. (1957) Space and Time Spectra of Stationary Stochastic Waves, with Special Reference to Microtremors. Bulletin of the Earthquake Research Institute, 35, 415-456. |
[6] | Cheng, F., Xia, J., Luo, Y., Xu, Z., Wang, L., Shen, C., et al. (2016) Multichannel Analysis of Passive Surface Waves Based on Cross-Correlations. Geophysics, 81, EN57-EN66. https://doi.org/10.1190/geo2015-0505.1 |
[7] | Cheng, F., Xia, J., Behm, M., Hu, Y. and Pang, J. (2019) Automated Data Selection in the Tau-p Domain: Application to Passive Surface Wave Imaging. Surveys in Geophysics, 40, 1211-1228. https://doi.org/10.1007/s10712-019-09530-2 |
[8] | 汪利民, 夏江海, 罗银河, 等. 浅地表面波成像技术研究进展与展望[J]. 地球与行星物理论评, 2022, 53(6): 613-655. |
[9] | 席超强. 被动源面波频散分析中“交叉”假频成因与压制研究[D]: [博士学位论文]. 杭州: 浙江大学, 2021. |
[10] | Nakata, N. (2016) Near-Surface S-Wave Velocities Estimated from Traffic-Induced Love Waves Using Seismic Interferometry with Double Beamforming. Interpretation, 4, SQ23-SQ31. https://doi.org/10.1190/int-2016-0013.1 |
[11] | Quiros, D.A., Brown, L.D. and Kim, D. (2016) Seismic Interferometry of Railroad Induced Ground Motions: Body and Surface Wave Imaging. Geophysical Journal International, 205, 301-313. https://doi.org/10.1093/gji/ggw033 |
[12] | Zheng, L., Fan, X., Zhang, P., Hao, J., Qian, H. and Zheng, T. (2021) Detection of Urban Hidden Faults Using Group-Velocity Ambient Noise Tomography beneath Zhenjiang Area, China. Scientific Reports, 11, Article No. 987. https://doi.org/10.1038/s41598-020-80249-6 |
[13] | Mi, B., Xia, J., Tian, G., Shi, Z., Xing, H., Chang, X., et al. (2022) Near-Surface Imaging from Traffic-Induced Surface Waves with Dense Linear Arrays: An Application in the Urban Area of Hangzhou, China. Geophysics, 87, B145-B158. https://doi.org/10.1190/geo2021-0184.1 |
[14] | 刘红蕾. 基于交通类地震背景噪声的多分量面波成像研究及应用[D]: [硕士学位论文]. 武汉: 中国地质大学, 2023. |
[15] | 方嵩根, 吴荣新, 吴海波. 基于主被动源频散曲线拼接策略的面波频散曲线反演研究[J]. 工程地球物理学报, 2024, 21(1): 168-175. |
[16] | Chmiel, M., Mordret, A., Boué, P., Brenguier, F., Lecocq, T., Courbis, R., et al. (2019) Ambient Noise Multimode Rayleigh and Love Wave Tomography to Determine the Shear Velocity Structure above the Groningen Gas Field. Geophysical Journal International, 218, 1781-1795. https://doi.org/10.1093/gji/ggz237 |