|
航空薄壁件多工序连续工艺链式仿真方法研究
|
Abstract:
本文以2219铝合金燃料贮箱底为例,研究基于ABAQUS的航空薄壁件多工序连续工艺链式仿真方法。介绍了贮箱底的加工工序,包括充液拉深、去应力退火和镜像铣削等。阐述了不同工序间数据传递方法,通过读取.odb文件实现变形体、应力和温度场等数据传递。详细描述了各工序的仿真过程及方法,如充液拉深的有限元模型建立,去应力退火的顺序耦合方法,镜像铣削的“动态载荷 + 生死单元”技术及铣削力方向变换方法。经实验验证,采用相关设备进行各工序加工,对测试点残余应力检测并与仿真结果对比,虽存在偏差但大体趋势相同,证明该仿真方法具有可行性和可靠性,对航空薄壁件加工有指导意义,同时指出未来研究方向。
This article takes the bottom of 2219 aluminum alloy fuel storage tank as an example to study the ABAQUS based multi process continuous process chain simulation method for aviation thin-walled parts. Introduced the processing procedures for the bottom of the storage tank, including liquid filled deep drawing, stress relief annealing, and mirror milling. Explained the data transfer methods between different processes, and achieved data transfer of deformation bodies, stress and temperature fields by reading .odb files. The simulation process and methods of each process were described in detail, such as the establishment of a finite element model for liquid filled deep drawing, the sequential coupling method for stress relief annealing, the “dynamic load + birth and death element” technique for mirror milling, and the method for changing the direction of milling force. Through experimental verification, it has been found that using relevant equipment for various processing steps, residual stress detection at test points, and comparison with simulation results have shown that although there are deviations, the general trend is the same. This proves that the simulation method is feasible and reliable, and has guiding significance for the processing of thin-walled aerospace parts. At the same time, future research directions are pointed out.
[1] | Ning, H., Zhigang, W., Chengyu, J. and Bing, Z. (2003) Finite Element Method Analysis and Control Stratagem for Machining Deformation of Thin-Walled Components. Journal of Materials Processing Technology, 139, 332-336. https://doi.org/10.1016/s0924-0136(03)00550-8 |
[2] | 金志刚. 大型叶片数控加工精度提升技术分析[J]. 现代制造技术与装备, 2017(12): 131, 134. |
[3] | Yao, C., Zhang, J., Cui, M., Tan, L. and Shen, X. (2020) Machining Deformation Prediction of Large Fan Blades Based on Loading Uneven Residual Stress. The International Journal of Advanced Manufacturing Technology, 107, 4345-4356. https://doi.org/10.1007/s00170-020-05316-8 |
[4] | Yanagimoto, J., Banabic, D., Banu, M. and Madej, L. (2022) Simulation of Metal Forming—Visualization of Invisible Phenomena in the Digital Era. CIRP Annals, 71, 599-622. https://doi.org/10.1016/j.cirp.2022.05.007 |
[5] | LI, Y., GAN, W., ZHOU, W. and LI, D. (2023) Review on Residual Stress and Its Effects on Manufacturing of Aluminium Alloy Structural Panels with Typical Multi-Processes. Chinese Journal of Aeronautics, 36, 96-124. https://doi.org/10.1016/j.cja.2022.07.020 |
[6] | Li, J., Carsley, J.E., Stoughton, T.B., Hector, L.G. and Hu, S.J. (2013) Forming Limit Analysis for Two-Stage Forming of 5182-O Aluminum Sheet with Intermediate Annealing. International Journal of Plasticity, 45, 21-43. https://doi.org/10.1016/j.ijplas.2012.10.004 |
[7] | 孔祥景. 多工序航天薄壁件铣削加工残余应力的控制方法研究[D]: [硕士学位论文]. 上海: 上海理工大学, 2021. |
[8] | 詹梅, 李虎, 杨合, 等. 大型复杂薄壁壳体多道次旋压过程中的壁厚变化[J]. 塑性工程学报, 2008(2): 115-121. |
[9] | 周建君, 许俊海, 范青山, 等. ABAQUS二次开发在自冲铆接模拟中的研究[J]. 机械制造与自动化, 2021, 50(5): 146-148. |
[10] | Sugianto, A., Narazaki, M., Kogawara, M. and Shirayori, A. (2009) A Comparative Study on Determination Method of Heat Transfer Coefficient Using Inverse Heat Transfer and Iterative Modification. Journal of Materials Processing Technology, 209, 4627-4632. https://doi.org/10.1016/j.jmatprotec.2008.10.016 |
[11] | 蒋涛. 柴油机机体残余应力模拟与加工变形研究[D]: [硕士学位论文]. 镇江: 江苏科技大学, 2017. |