全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

改进YOLOv8的绝缘子缺陷检测研究
Research on Insulator Defect Detection of Improved YOLOv8

DOI: 10.12677/mos.2025.141120, PP. 1334-1343

Keywords: 绝缘子,改进YOLOv8,注意力机制,目标检测
Insulator
, Improved YOLOv8, Attention Mechanism, Object Detection

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了维持电力传输的可靠性、安全性和可持续性,绝缘子的缺陷检测成为电力巡检中一项重要的任务。为此,本文提出了绝缘子缺陷检测改进模型P-YOLOv8。通过集成Slim-neck模块和CBAM (Convolutional Block Attention Module)注意力机制模块,显著提升了模型对小目标物体的特征提取能力,从而更好地适应绝缘子缺陷数据集的特性。CBAM注意力机制模块的引入,使得神经网络能够更加聚焦于绝缘子缺陷信息的捕捉;Slim-neck模块是一种用于目标检测的神经网络结构,Slim-neck模块中的模块首先使用轻量级卷积,GSConv它强化了关键特征,使用深度可分离卷积降低了模型的计算成本。通过对YOLOv5和YOLOv8模型的对比分析,我们决定采用经过改进的P-YOLOv8模型作为绝缘子缺陷预测的优选模型。P-YOLOv8在精确度、召回率和mAP-kp上分别达97.2%、98.4%、99.3%,较YOLOv5显著提升。此外,P-YOLOv8在光照强度环境下表现优异,精确度、召回率和mAP-kp分别为92.17%、90.2%、97.6%,较YOLOv8有所提升,这些数据充分证明了改进P-YOLOv8模型不仅在网络模型精度上保持了高水平,同时对光线等复杂环境因素具有较强的鲁棒性。因此,它能够有效地应对复杂环境下的绝缘子缺陷预测任务,为绝缘子的安全监测提供了有力的技术保障。
In order to maintain the reliability, safety, and sustainability of power transmission, defect detection of insulators has become an important task in power inspection. Therefore, this article proposes an improved model P-YOLOv8 for insulator defect detection. By integrating the Slim-neck module and the Convolutional Block Attention Module (CBAM) attention mechanism module, the model’s feature extraction ability for small target objects has been significantly improved, thus better adapting to the characteristics of insulator defect datasets. The introduction of the CBAM attention mechanism module enables neural networks to focus more on capturing insulator defect information; The Slim-neck module is a neural network structure used for object detection. The modules in the Slim-neck module first use lightweight convolution GSConv, which enhances the recognition of key features, and uses depth wise separable convolution to reduce the computational cost of the model. Through comparative analysis of YOLOv5 and YOLOv8 models, we have decided to adopt the improved P-YOLOv8 model as the preferred model for predicting insulator defects. P-YOLOv8 achieved accuracy, recall, and mAP kp of 97.2%, 98.4%, and 99.3%, respectively, significantly improving compared to YOLOv5. In addition, P-YOLOv8 performs excellently in light intensity environments, with accuracy, recall, and mAP kp of 92.17%, 90.2%, and 97.6%, respectively, which is an improvement compared to YOLOv8. These data fully demonstrate that the improved P-YOLOv8 model not only maintains a high level of network model accuracy, but also has strong robustness to complex environmental factors such as light lines. Therefore, it can effectively cope with the task of predicting insulator defects in complex environments, providing strong technical support for the safety monitoring of

References

[1]  张彦生, 王成龙, 刘远红. 基于深度学习的绝缘子故障检测研究[J]. 电子测量技术, 2023, 46(8): 105-111.
[2]  胡祥, 李英娜. 基于Faster R-CNN和U-net改进的混合模型绝缘子障检测[J]. 电视技术, 2021, 45(5): 125-130.
[3]  郭雨, 马美玲, 黎大林. 基于改进YOLOv5的轻量化绝缘子表面缺陷检测研究[J]. 激光与光电子学进展, 2023, 60(24): 222-229.
[4]  王小雷, 吴洪潭, 赵坚. 玻璃绝缘子动态差分缺陷检测方法研究[J]. 中国计量学院学报, 2014, 25(1): 34-39.
[5]  李斌, 曾筠婷, 朱新山, 等. 基于多尺度上下文感知的绝缘子缺陷检测网络[J]. 高电压技术, 2022, 48(8): 2905-2914.
[6]  马进, 白雨生. 应用于绝缘子缺陷检测的轻量化YOLOv4研究[J]. 电子测量技术, 2022, 45(14): 123-130.
[7]  贾晓芬, 于业齐, 郭永存, 等. 航拍绝缘子自爆缺陷的轻量化检测方法[J]. 高电压技术, 2023, 49(1): 294-300.
[8]  李轩慧, 郑钰辉. 一种基于YOLOv8网络的目标检测方法及系统[P]. 中国专利, 202310935499. 2023-11-10.
[9]  孙福临, 李振轩, 粱允泉, 等. 基于改进YOLOv5算法和边缘设备的电动车违规载人检测[J]. 现代计算机, 2023, 29(8): 1-11.
[10]  潘桂霞, 赖惠成, 王同官, 等. 一种Yolov5颈部细化的小交通标志检测算法[J]. 现代电子技术, 2023, 46(14): 56-62.
[11]  付国栋, 黄进, 杨涛, 郑思宇. 改进CBAM的轻量级注意力模型[J]. 计算机工程与应用, 2021, 57(20): 150-156.
[12]  Network Daily News (2023) Studies from Qingdao University of Technology Yield New Information about Electronic Imaging (Insulator Defect Detection Based on Improved You-Only-Look-Once V4 in Complex Scenarios.
[13]  Das, L., Saadat, M.H., Gjorgiev, B., et al. (2022) Object Detection-Based Inspection of Power Line Insulators: Incipient Fault Detection in the Low Data-Regime.
https://doi.org/10.48550/arXiv.2212.11017
[14]  Li, Y., Ni, M. and Lu, Y. (2022) Insulator Defect Detection for Power Grid Based on Light Correction Enhancement and Yolov5 Model. Energy Reports, 8, 807-814.
https://doi.org/10.1016/j.egyr.2022.08.027

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133