|
基于ANSYS的水下机器人的框架优化设计
|
Abstract:
本研究旨在通过ANSYS软件对水下机器人框架进行拓扑优化设计,以提高其结构性能并降低重量。首先,利用SolidWorks构建了水下机器人框架的三维模型,并在ANSYS Workbench中进行了静力学应力应变分析。分析结果表明,初始设计在承受水下压力时结构稳定,但中间部位形状不规则,可能影响应力分布。为了解决这些问题,对框架中间部位进行了精确建模,目标是将该部位的质量减少至原始的37.5%,并进行了进一步的应力和应变分析。优化后的框架在减轻重量的同时,保持了足够的结构强度和刚度,满足了设计要求。应力和应变分析显示,中间部位的应力集中现象得到了显著改善,整体应力分布更加合理,最大应力值远低于材料的屈服强度。此外,优化后的框架设计提高了制造工艺的可行性,确保了轻量化设计中的水下行驶工作条件。拓扑优化过程中,通过移除低应力区域的材料,实现了结构轻量化,同时保留了关键部位的材料,去除了对性能影响较小的部分。最终,优化后的框架模型在保证功能和强度的前提下,成功减少了材料使用量,为降低生产成本提供了依据。本研究为水下机器人框架的轻量化设计和材料优化提供了重要的技术支持,并为降低成本和提升性能提供了可行的工程解决方案。
The aim of this study is to optimize the topology design of an underwater robot frame by ANSYS software to improve its structural performance and reduce its weight. Firstly, a 3D model of the underwater robot frame was constructed using SolidWorks and a static stress-strain analysis was performed in ANSYS Workbench. The analysis results show that the initial design is structurally stable when subjected to underwater pressure, but the irregular shape of the middle part may affect the stress distribution and manufacturing process. To address these issues, the team accurately modeled the middle part of the frame with the goal of reducing the mass of the part to 37.5% of the original, and performed further stress and strain analyses. The optimized frame reduced weight while maintaining sufficient structural strength and stiffness to meet the design requirements. The stress and strain analyses show that the stress concentration phenomenon in the middle part has been significantly improved, and the overall stress distribution is more reasonable, with the maximum stress value well below the yield strength of the material. In addition, the optimized frame design improves the feasibility of the manufacturing process and ensures the working conditions for underwater driving in the lightweight design. During the topology optimization process, structural light weighting is achieved by removing materials in low-stress regions, while materials in critical areas are retained and parts with less impact on performance are removed. Ultimately, the optimized frame model successfully reduces the amount of material used while ensuring functionality and strength, providing a basis for reducing production costs. This study provides important technical support for lightweight design and material optimization of underwater robot frames, and offers feasible engineering solutions for cost reduction and
[1] | 李帅, 穆瑞芳, 张壮志. 基于ANSYS Workbench拓扑优化对止动架轻量化的研究[J]. 船舶工程, 2016, 38(7): 35-39+48. |
[2] | 郭政. 试析机械优化设计方法[J]. 山东工业技术, 2018(16): 41. |
[3] | 曹文强, 闫敬, 杨睍, 等. 基于流速场预测的水下机器人编队包围算法[J]. 中国科学: 信息科学, 2024, 54(12): 2794-2810. |
[4] | 夏明海, 尚建忠, 殷谦, 等. 水下机器人桨鳍协同推进姿态控制[J]. 国防科技大学学报, 2024, 46(6): 184-193. |
[5] | Shi, T., Liu, M., Niu, Y., Yang, Y. and Huang, Y. (2020) Underwater Targets Detection and Classification in Complex Scenes Based on an Improved Yolov3 Algorithm. Journal of Electronic Imaging, 29, Article ID: 043013. https://doi.org/10.1117/1.jei.29.4.043013 |
[6] | 国海芝. 海参捕捞机器人水下运动仿真研究[D]: [硕士学位论文]. 济南: 山东建筑大学, 2018. |
[7] | 李迎, 邢心魁, 宋若翔, 张坚. 基于ANSYS平台的结构拓扑优化实现途径[J]. 低温建筑技术, 2016, 38(4): 53-55. |
[8] | Zhuang, P., Li, C. and Wu, J. (2021) Bayesian Retinex Underwater Image Enhancement. Engineering Applications of Artificial Intelligence, 101, Article ID: 104171. https://doi.org/10.1016/j.engappai.2021.104171 |
[9] | 赵阳. 小型水下机器人耐压壳基本设计研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2018. |
[10] | 徐晟最, 王伟, 王国顺, 等. 仿生鳍式水下机器人轨迹优化运动控制[J]. 排灌机械工程学报, 2024, 42(12): 1236-1242. http://kns.cnki.net/kcms/detail/32.1814.TH.20241203.1603.012.html |