|
汽车空调风门控制算法研究
|
Abstract:
针对汽车空调风门控制系统在位置控制中动态响应慢和稳态精度低的缺点,提出了一种模型预测控制算法MPC (Model predictive control)和非奇异终端滑膜相结合的单独的风门控制器。首先利用运动学几何关系建立独立汽车空调风门的数学模型;其次,基于非奇异终端滑膜设计控制器,用于跟踪风门数学模型计算得到的期望开度;最后,采用MPC并基于非奇异终端滑膜控制器,使风门对期望开度进行跟踪,并在约束条件的情况下通过风门复合控制器求解出最优控制量,从而驱动风门实现位置的渐进跟踪。通过仿真验证了所提控制策略的有效性,该复合控制方案只需获得被控对象相对阶的模型信息,可在模型存在不确定性和不定外部扰动的情况下具有较好的鲁棒性和快速性。实验结果表明,与通过风门运动学模型进行PID控制策略相比,该复合控制方案具有良好的自适应性和优越性。
Due to the slow dynamic response and low steady-state accuracy of automotive air conditioning damper control system in position control, a Model predictive control (MPC) algorithm combined with a non-singular terminal synovial membrane for a single damper controller was presented. Firstly, the mathematical model of independent automobile air conditioning damper is established by using kinematic geometric relation. Secondly, the controller is designed based on the non-singular terminal synovial membrane to track the desired opening calculated by the mathematical model of the damper. Finally, MPC and non-singular terminal synoptic controller are used to track the desired opening of the damper, and the optimal control quantity is solved by the damper compound controller under constrained conditions, so as to drive the damper to achieve progressive position tracking. The compound control scheme only needs to know the model information of the relative order, can have good servo performance and robustness in the presence of uncertainties and uncertain disturbances in the model. The experimental results show that compared with PID control strategy based on throttle kinematics model, the compound control scheme has good adaptability and superiority.
[1] | 李志伟. 汽车空调控制系统的现状和发展趋势[J]. 时代汽车, 2019(5): 170-171. |
[2] | 孙小霞. 新能源汽车电动空调控制系统及其实现与研究[J]. 黑龙江科学, 2018, 9(18): 150-151. |
[3] | 吴志佳, 程谭送, 李生智, 鄢雨. 智能驾驶域控制器的发展趋势[J]. 中国科技期刊数据库工业A, 2023(7): 1-4. |
[4] | 马浩然, 李佳辉, 毕崟. 新能源汽车热管理研究综述[J]. 汽车实用技术, 2023, 48(8): 1-9. |
[5] | 王文涛, 贾志成. 基于模糊控制的汽车空调风门控制的研究[J]. 汽车零部件, 2011(11): 65-67. |
[6] | 鲍磊. 基于PID控制的新能源汽车空调控制系统设计分析[J]. 时代汽车, 2021(13): 117-118. |
[7] | Hou, L.M. and Xing, X. (2011) Automotive Air Conditioning System Fuzzy Control Algorithm. Advanced Materials Research, 181, 787-791. https://doi.org/10.4028/www.scientific.net/amr.181-182.787 |
[8] | 韩敬贤, 高悦. 一种基于PLC的汽车空调循环智能控制系统的研究[J]. 时代汽车, 2018(8): 123-124. |
[9] | 方祥建, 王建平. 基于模糊PID模型预测的电动汽车空调控制研究[J]. 安徽工程大学学报, 2022, 37(2): 34-42. |
[10] | Xie, Y., Yang, P., Qian, Y., Zhang, Y., Li, K. and Zhou, Y. (2022) A Two-Layered Eco-Cooling Control Strategy for Electric Car Air Conditioning Systems with Integration of Dynamic Programming and Fuzzy Pid. Applied Thermal Engineering, 211, Article ID: 118488. https://doi.org/10.1016/j.applthermaleng.2022.118488 |
[11] | 杨萍萍, 马亮. 基于模糊PID的汽车空调控制器设计[J]. 自动化仪表, 2021, 42(9): 39-44. |
[12] | 管继富, 赵宇枫, 詹远, 曹立. 电动汽车空调系统随机模型预测控制算法研究[J]. 北京理工大学学报自然版, 2021, 41(5): 480-486. |
[13] | 龙晓明. 汽车空调温度风门控制方法研究[J]. 汽车电器, 2020(8): 51-55, 58. |
[14] | 奚培锋, 胡桐月, 徐得天. 基于MPC-PID协同优化控制方法的策略研究与展望[J]. 工业控制计算机, 2022, 35(6): 94-95+98. |
[15] | 周义棚, 杨威. 基于MPC和PID的无人驾驶车辆路径跟踪控制[J]. 农业装备与车辆工程, 2023, 61(9): 78-81+116. |
[16] | 王志甄, 邹志云. 电热水浴装置的MPC-PID串级控制研究[J]. 石油化工自化, 2018, 54(3): 36-40. |
[17] | Olaizola, I., Quartulli, M., Unzueta, E., Goicolea, J. and Flórez, J. (2022) Refinery 4.0, a Review of the Main Challenges of the Industry 4.0 Paradigm in Oil & Gas Downstream. Sensors, 22, Article No. 9164. https://doi.org/10.3390/s22239164 |
[18] | Muske, K.R. and Badgwell, T.A. (2002) Disturbance Modeling for Offset-Free Linear Model Predictive Control. Journal of Process Control, 12, 617-632. https://doi.org/10.1016/s0959-1524(01)00051-8 |
[19] | Han, J. (2009) From PID to Active Disturbance Rejection Control. IEEE Transactions on Industrial Electronics, 56, 900-906. https://doi.org/10.1109/tie.2008.2011621 |
[20] | 冯勇, 余星火. 非奇异终端滑模控制系统的设计方法[J]. 控制与决策, 2002, 17(2): 194-198. |
[21] | 席裕庚. 预测控制[M]. 北京: 国防工业出版社, 2013: 1-30. |
[22] | Qin, S.J. and Badgwell, T.A. (2003) A Survey of Industrial Model Predictive Control Technology. Control Engineering Practice, 11, 733-764. https://doi.org/10.1016/s0967-0661(02)00186-7 |