全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于绳驱与SEA的肘关节柔性外骨骼设计与分析
Design and Analysis of a Flexible Exoskeleton for the Elbow Joint Based on Rope Drive and SEA

DOI: 10.12677/mos.2025.141111, PP. 1233-1243

Keywords: 肘关节外骨骼,串联弹性驱动器,动力学建模,运动学仿真
Elbow Exoskeleton
, Series Elastic Actuator, Kinetic Modelling, Kinematic Simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

脑卒中患者常伴有上肢运动障碍,对其进行及时、有效的康复训练,在一定程度上可重建患者上肢与受损中枢神经间的联系,提高患者的运动能力。传统刚性驱动的外骨骼机器人结构笨重,影响便携性,且无法有效应对外部冲击,降低了人机交互的安全性和舒适性。针对肘关节运动功能障碍,本文设计了一款基于绳驱与串联弹性驱动器(SEA)的肘关节外骨骼,旨在提高康复训练的效率和患者主动参与度。该外骨骼采用轻量化、小型化设计,通过动力学与运动学建模确保系统高效、安全。研究结果表明,该肘关节外骨骼能够满足康复训练中肘关节屈曲与伸展运动的需求,且通过控制SEA输出力矩,实现对外骨骼运动的实时控制,对提升康复训练效果具有重要意义。
Stroke patients frequently suffer from upper limb movement problems. Timely and effective rehabilitation training can help repair the link between the injured upper limb and the damaged central nervous system, improving the patient’s motor abilities. Traditional rigidly driven exoskeleton robots are heavy, which limits their mobility and capacity to efficiently control external impacts, lowering the safety and comfort of human-computer interaction. To address elbow joint movement dysfunction, we designed an elbow exoskeleton based on rope-driven and series elastic actuator (SEA) technology. This lightweight and miniaturized exoskeleton ensures system efficiency and safety through dynamic and kinematic modeling. The results indicate that the elbow exoskeleton meets the requirements for elbow flexion and extension during rehabilitation training. By controlling the SEA output torque, real-time control of exoskeleton movement is achieved, which is of great significance for improving the effectiveness of rehabilitation training.

References

[1]  Ma, Q., Li, R., Wang, L., Yin, P., Wang, Y., Yan, C., et al. (2021) Temporal Trend and Attributable Risk Factors of Stroke Burden in China, 1990-2019: An Analysis for the Global Burden of Disease Study 2019. The Lancet Public Health, 6, e897-e906.
https://doi.org/10.1016/s2468-2667(21)00228-0
[2]  唐春花, 郭露, 李琼, 等. 2022年全球卒中数据报告解读[J]. 诊断学理论与实践, 2023, 22(3): 238-246.
[3]  李程程, 孟庆亮. 康复器械在偏瘫患者中的应用现状及效果研究[J]. 护理学, 2019, 8(3): 268-271.
[4]  Wang, Y.R., Leng Z.W., Zhao,Y.H., et al. (2022) Analysis of the Problems of Guarantee Mechanism of the Connection between Supply and Demand of Rehabilitation Services in China. Chinese Journal of Health Policy, 15, 65-70.
[5]  Xue, X., Yang, X., Deng, Z., Tu, H., Kong, D., Li, N., et al. (2022) Global Trends and Hotspots in Research on Rehabilitation Robots: A Bibliometric Analysis from 2010 to 2020. Frontiers in Public Health, 9, Article 6723.
https://doi.org/10.3389/fpubh.2021.806723
[6]  Keeling, A.B., Piitz, M., Semrau, J.A., Hill, M.D., Scott, S.H. and Dukelow, S.P. (2021) Robot Enhanced Stroke Therapy Optimizes Rehabilitation (RESTORE): A Pilot Study. Journal of Neuro Engineering and Rehabilitation, 18, 1-16.
https://doi.org/10.1186/s12984-021-00804-8
[7]  朱纯煜, 李素姣, 喻洪流. 穿戴式上肢外骨骼康复机器人发展现状分析[J]. 生物医学工程与临床, 2021, 25(3): 375-380.
[8]  Hogan, N., Krebs, H.I., Charnnarong, J., Srikrishna, P. and Sharon, A. (1993) MIT-MANUS: A Workstation for Manual Therapy and Training. Telemanipulator Technology, 1833, 28-34.
https://doi.org/10.1117/12.142124
[9]  Burgar, C.G., Lum P.S., Shor, P.C., et al. (2000) Development of Robots for Rehabilitation Therapy: The Palo Alto VA/Stanford Experience. Journal of Rehabilitation Research & Development, 37, 663-673.
[10]  Reinkensmeyer, D.J., Kahn, L.E., Averbuch, M., et al. (2000) Understanding and Treating Arm Movement Impairment after Chronic Brain Injury: Progress with the ARM Guide. Journal of Rehabilitation Research & Development, 37, 653-662.
[11]  杨启志, 曹电锋, 赵金海. 上肢康复机器人研究现状的分析[J]. 机器人, 2013, 35(5): 120-130.
[12]  Song, Z. and Guo, S. (2011) Development of a New Compliant Exoskeleton Device for Elbow Joint Rehabilitation. The 2011 IEEE/ICME International Conference on Complex Medical Engineering, Harbin, 22-25 May 2011, 647-651.
https://doi.org/10.1109/iccme.2011.5876820
[13]  Zhang, S., Guo, S., Pang, M., Gao, B. and Guo, P. (2015) Mechanical Design and Control Method for SEA and VSA-Based Exoskeleton Devices for Elbow Joint Rehabilitation. Neuroscience and Biomedical Engineering, 2, 142-147.
https://doi.org/10.2174/2213385203666150514235041
[14]  戴一鸣, 陈嘉琛, 刘晨东, 等. 可穿戴柔性上肢外骨骼的研究进展与展望[J]. 哈尔滨工业大学学报, 2024, 56(8): 1-16.
[15]  Ren, L., Qian, Z. and Ren, L. (2014) Biomechanics of Musculoskeletal System and Its Biomimetic Implications: A Review. Journal of Bionic Engineering, 11, 159-175.
https://doi.org/10.1016/s1672-6529(14)60033-0
[16]  陈文斌. 人体上肢运动学分析与类人肢体设计及运动规划[D]: [博士学位论文]. 武汉: 华中科技大学, 2012.
[17]  Zhang, Q., Xiao, X. and Guo, Z. (2016) Power Efficiency-Based Stiffness Optimization of a Compliant Actuator for Underactuated Bipedal Robot. In: Lecture Notes in Computer Science, Springer, 186-197.
https://doi.org/10.1007/978-3-319-43506-0_16
[18]  韩巍, 宋健, 王广志, 等. 1种新的肘关节外固定旋转轴的定位方法及其可行性评估[J]. 北京大学学报(医学版), 2016, 48(2): 218-223.
[19]  翟宇毅, 马新愿, 陈冬冬, 等. 柔性穿戴式上肢康复机器人关节运动控制研究[J]. 华南理工大学学报(自然科学版), 2021, 49(6): 19-27.
[20]  Enya, T., Yamane, M., Nakamura, H., Aoki, T., Nishimoto, Y. and Yano, K. (2011) Upper Limb Flexion Assistance Based on Minimum-Jerk Trajectory Using Wearable Motion-Assist Robot. IFAC Proceedings Volumes, 44, 5962-5967.
https://doi.org/10.3182/20110828-6-it-1002.02055

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133