全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于图像识别的SolidWorks三维重建技术研究
Research on SolidWorks 3D Reconstruction Technology Based on Image Recognition

DOI: 10.12677/mos.2025.141109, PP. 1200-1214

Keywords: 图像识别,三维重建,卷积神经网络
Image Recognition
, 3D Reconstruction, Convolutional Neural Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究聚焦于基于图像识别的三维重建技术,强调高层理解的扫描图纸作为重要前提,并在机械知识的引导下实现三维模型的重建。图像识别分为基本图素识别和字符识别两个部分,其中基本图素识别采用改进的Hough变换法,字符识别采用基于卷积神经网络的方法,以适应实际图样的特殊情景。实验结果表明,该模型具有显著的识别效果,能够有效兼容干扰图线,识别率高达98.65%。随后,通过工程图的语义知识,建立基本图素之间的拓扑关系和尺寸约束图形链,实现对扫描图纸的二维重建。最终,在机械领域知识的支持下,充分利用图纸识别后的信息和知识推理,实现三维形体的重建。
This study focuses on 3D reconstruction techniques based on image recognition, with an emphasis on the high-level understanding of scanned drawings as a crucial prerequisite. The aim is to realize the reconstruction of 3D models under the guidance of mechanical knowledge. The image recognition process is divided into two parts: basic pixel recognition and character recognition. The improved Hough transform method is adopted for basic pixel recognition, while character recognition utilizes a method based on convolutional neural networks to adapt to the specific characteristics of actual drawings. Experimental results demonstrate that the model has a significant recognition effect, effectively handling interference lines with a high recognition rate of 98.65%. Furthermore, by leveraging semantic knowledge from engineering drawings, the topological relationship between basic graphic elements and size constraint graph chains is established to achieve two-dimensional reconstruction of scanned drawings. Finally, with support from mechanical domain knowledge, 3D shape reconstruction is realized through comprehensive information utilization and knowledge reasoning following drawing recognition.

References

[1]  Kapitanov, A., Kozlova, A. and Tyasto, S. (2018) The Information Model of the Modern Digital Production. MATEC Web of Conferences, 224, Article 02065.
https://doi.org/10.1051/matecconf/201822402065
[2]  杨建鸣, 陆家山, 严鹏贺. 工程图的三维重建方法研究[J]. 机械设计与制造, 2017(12): 216-219.
[3]  Idesawa, M. (1973) A System to Generate a Solid Figure from Three View. Bulletin of JSME, 16, 216-225.
https://doi.org/10.1299/jsme1958.16.216
[4]  Wesley, M.A. and Markowsky, G. (1981) Fleshing Out Projections. IBM Journal of Research and Development, 25, 934-954.
https://doi.org/10.1147/rd.256.0934
[5]  刘世霞, 胡事民, 汪国平, 孙家广. 基于三视图的三维形体重建技术[J]. 计算机学报, 2000, 23(2): 141-146.
[6]  龚洁晖, 张慧. 基于工程图的三维重建研究[J]. 软件学报, 2008, 19(7): 1794-1805.
[7]  Alexei, Z. and Arkady, Z. (2014) Three-Dimensional Reconstruction from Projections Based on Incidence Matrices of Patterns. AASRI Procedia, 9, 72-77.
https://doi.org/10.1016/j.aasri.2014.09.013
[8]  Aldefeld, B. (1983) On Automatic Recognition of 3D Structures from 2D Representations. Computer-Aided Design, 15, 59-64.
https://doi.org/10.1016/0010-4485(83)90169-0
[9]  张雪, 赵德胜, 李丽萍. 基于CSG方法的工程图三维形体重建[J]. 西安邮电大学学报, 2015, 20(4): 80-83, 124.
[10]  Chen, Z. and Perng, D. (1988) Automatic Reconstruction of 3D Solid Objects from 2D Orthographic Views. Pattern Recognition, 21, 439-449.
https://doi.org/10.1016/0031-3203(88)90003-9
[11]  Lin, W. and Fang, C. (2007) Synthesized Affine Invariant Function for 2D Shape Recognition. Pattern Recognition, 40, 1921-1928.
https://doi.org/10.1016/j.patcog.2006.03.021
[12]  Chen, G., Zhang, D., Li, P., Chen, C., Wang, Y. and Su, S. (2019) Research on the Knowledge Representation and Retrieval for Mechanical Product Design Based on Ontology. International Journal of Wireless and Mobile Computing, 16, 340.
https://doi.org/10.1504/ijwmc.2019.10021628
[13]  杨海成, 主编. 数字化设计制造技术基础[M]. 西安: 西北工业大学出版社, 2009.
[14]  Suresh, K. and Srinivasa rao, P. (2018) Various Image Segmentation Algorithms: A Survey. In: Satapathy, S., Bhateja, V. and Das, S., Eds., Smart Intelligent Computing and Applications, Springer, 233-239.
https://doi.org/10.1007/978-981-13-1927-3_24
[15]  Karthikeyan, V. (2013) Hilditchs Algorithm Based Tamil Character Recognition. International Journal of Computer Science & Engineering Technology, 4, 268-273.
[16]  Liu, Z., Liang, J. and Pan, Y. (2014) Construction of Thermodynamic Properties Look-Up Table with Block-Structured Adaptive Mesh Refinement Method. Journal of Thermophysics and Heat Transfer, 28, 50-58.
https://doi.org/10.2514/1.t4273
[17]  Oh, J.S. (2018) Straight Line Detection Using PCA and Hough Transform. Journal of the Korea Institute of Information and Communication Engineering, 22, 227-232.
[18]  Jiang, G., Wang, X., Wang, Z. and Liu, H. (2016) Wheat Rows Detection at the Early Growth Stage Based on Hough Transform and Vanishing Point. Computers and Electronics in Agriculture, 123, 211-223.
https://doi.org/10.1016/j.compag.2016.02.002
[19]  Djekoune, A.O., Messaoudi, K. and Amara, K. (2017) Incremental Circle Hough Transform: An Improved Method for Circle Detection. Optik, 133, 17-31.
https://doi.org/10.1016/j.ijleo.2016.12.064
[20]  Sagar, S. and Dixit, S. (2019) A Comprehensive Study on Character Segmentation. In: Pandian, D., Fernando, X., Baig, Z. and Shi, F., Eds., Proceedings of the International Conference on ISMAC in Computational Vision and Bio-Engineering 2018 (ISMAC-CVB), Springer International Publishing, 1509-1515.
https://doi.org/10.1007/978-3-030-00665-5_141
[21]  Li, P., Peng, L. and Wen, J. (2016) Rejecting Character Recognition Errors Using CNN Based Confidence Estimation. Chinese Journal of Electronics, 25, 520-526.
https://doi.org/10.1049/cje.2016.05.018
[22]  Ghiasi-Shirazi, K. (2019) Generalizing the Convolution Operator in Convolutional Neural Networks. Neural Processing Letters, 50, 2627-2646.
https://doi.org/10.1007/s11063-019-10043-7
[23]  Jiang, Z., Yin, F., Ge, Y. and Ren, L. (2020) A Multi-Scale Framework with Unsupervised Joint Training of Convolutional Neural Networks for Pulmonary Deformable Image Registration. Physics in Medicine & Biology, 65, Article 015011.
https://doi.org/10.1088/1361-6560/ab5da0
[24]  畅通, 包宏. 基于图形语义理解的三维重建技术[J]. 计算机工程与设计, 2005(9):2274-2276.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133