|
边界条件和转移条件均含谱参数的二阶J-对称微分算子
|
Abstract:
考虑一类耦合边界条件和转移条件均含谱参数的二阶复系数微分算子的J-自伴性和格林函数。在适当的Hilbert空间上定义一个与问题相关的线性算子,将所研究的问题转化为对此空间中算子的研究,并证明该算子是J-自伴的。另外,通过构造微分方程的基本解得到问题的格林函数。
In this paper, we consider the J-self-adjointness and Green’s function of a class of discontinuous second-order complex coefficient differential operator with eigenparameters in boundary and transmission conditions. By introducing a linear operator related to the problem in a suitable Hilbert space, the considered problem can be interpreted as the study of the operator in this space, and this operator is proved to be J-self-adjoint. In addition, the Green’s function of the problem is obtained by constructing the fundamental solutions of the differential equation.
[1] | Titeux, I. and Yakubov, Y. (1997) Completeness of Root Functions for Thermal Conduction in a Strip with Piecewise Continuous Coefficients. Mathematical Models and Methods in Applied Sciences, 7, 1035-1050. https://doi.org/10.1142/s0218202597000529 |
[2] | Tikhonov, A.N. and Samarskii, A.A. (1963) Equations of Mathematical Physics. Pergamon Press. |
[3] | Mukhtarov, O.S. and Kadakal, M. (2005) Some Spectral Properties of One Sturm-Liouville Type Problem with Discontinuous Weight. Siberian Mathematical Journal, 46, 681-694. https://doi.org/10.1007/s11202-005-0069-z |
[4] | Hao, X., Sun, J., Wang, A. and Yao, S. (2009) Completeness of Eigenfunctions of Sturm-Liouville Problems with Transmission Conditions. Methods and Applications of Analysis, 16, 299-312. https://doi.org/10.4310/maa.2009.v16.n3.a2 |
[5] | 李昆, 郑召文. 一类具有转移条件的Sturm-Liouville方程的谱性质[J]. 数学物理学报, 2015, 35(5): 910-926. |
[6] | Zhang, X. and Sun, J. (2017) Green Function of Fourth-Order Differential Operator with Eigenparameter-Dependent Boundary and Transmission Conditions. Acta Mathematicae Applicatae Sinica, English Series, 33, 311-326. https://doi.org/10.1007/s10255-017-0661-6 |
[7] | Cai, J., Zheng, Z. and Li, K. (2022) A Class of Singular Sturm-Liouville Problems with Discontinuity and an Eigenparameter-Dependent Boundary Condition. Mathematics, 10, Article 4430. https://doi.org/10.3390/math10234430 |
[8] | Akdoğan, Z., Demirci, M. and Mukhtarov, O.S. (2005) Discontinuous Sturm-Liouville Problems with Eigenparameter-Dependent Boundary and Transmissions Conditions. Acta Applicandae Mathematicae, 86, 329-344. https://doi.org/10.1007/s10440-004-7466-3 |
[9] | Hıra, F. and Altınışık, N. (2015) Sampling Theory for Sturm-Liouville Problem with Boundary and Transmission Conditions Containing an Eigenparameter. Zeitschrift für angewandte Mathematik und Physik, 66, 1737-1749. https://doi.org/10.1007/s00033-015-0505-2 |
[10] | 郭永霞. 常型Sturm-Liouville算子的逆谱问题[D]: [博士学位论文]. 西安: 陕西师范大学, 2015. |
[11] | Bartels, C., Currie, S. and Watson, B.A. (2021) Sturm-Liouville Problems with Transfer Condition Herglotz Dependent on the Eigenparameter: Eigenvalue Asymptotics. Complex Analysis and Operator Theory, 15, Article No. 71. https://doi.org/10.1007/s11785-021-01119-1 |
[12] | Du, G., Gao, C. and Wang, J. (2023) Spectral Analysis of Discontinuous Sturm-Liouville Operators with Herglotzs Transmission. Electronic Research Archive, 31, 2108-2119. https://doi.org/10.3934/era.2023108 |
[13] | Knowles, I. (1981) On the Boundary Conditions Characterizing J-Selfadjoint Extensions of J-Symmetric Operators. Journal of Differential Equations, 40, 193-216. https://doi.org/10.1016/0022-0396(81)90018-8 |
[14] | Race, D. (1985) The Theory of J-Selfadjoint Extensions of J-Symmetric Operators. Journal of Differential Equations, 57, 258-274. https://doi.org/10.1016/0022-0396(85)90080-4 |
[15] | Shang, Z. (1988) On J-Selfadjoint Extensions of J-Symmetric Ordinary Differential Operators. Journal of Differential Equations, 73, 153-177. https://doi.org/10.1016/0022-0396(88)90123-4 |
[16] | Li, J. and Xu, M. (2022) J-Selfadjointness of a Class of High-Order Differential Operators with Transmission Conditions. Frontiers of Mathematics, 17, 1025-1035. https://doi.org/10.1007/s11464-022-1032-z |
[17] | 王忠, 傅守忠. 线性算子谱理论及其应用[M]. 北京: 科学出版社, 2013. |
[18] | Zettl, A. (2005) Sturm-Liouville Theory. American Mathematical Society, New York. |