全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

具有Michaelis-Menten型离散捕食者–猎物模型的分岔分析
Bifurcation Analysis of Discrete Predator-Prey Model with Michaelis-Menten Type

DOI: 10.12677/aam.2025.141036, PP. 360-373

Keywords: Michaelis-Menten型,离散时间,倍周期分岔,Neimark-Sacker分岔
Michaelis-Menten Type
, Discrete Time, Period-Doubling Bifurcation, Neimark-Sacker Bifurcation

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了捕食者具有Michaelis-Menten型离散捕食者–猎物模型的动力学问题。为了探索模型的丰富动力学性质,采用欧拉近似得到离散时间的Leslie-Gower模型。给出了内部不动点的存在性及其局部渐近稳定性。在此基础上,利用分岔理论和中心流形定理,研究了倍周期分岔和Neimark-Sacker分岔。并取临界参数进行数值模拟,验证了倍周期分岔和Neimark-Sacker分岔的存在性。
In this paper, we investigate the dynamics of predator with Michaelis-Menten discrete predator-prey model. In order to explore the rich dynamic properties of the model, the discrete-time Leslie-Gower model is obtained by using Euler approximation. The existence of internal fixed points and their local asymptotic stability are given. On this basis, using bifurcation theory and central manifold theorem, the period-doubling bifurcation and Neimark-Sacker bifurcation are studied. The existence of period-doubling bifurcation and Neimark-Sacker bifurcation is verified by numerical simulation with critical parameters.

References

[1]  Danca, M., Codreanu, S. and Bakó, B. (1997) Detailed Analysis of a Nonlinear Prey-Predator Model. Journal of Biological Physics, 23, 11-20.
https://doi.org/10.1023/a:1004918920121
[2]  Kuznetsov, Y.A. (1998) Elements of Applied Bifurcation Theory. Springer.
https://doi.org/10.1007/978-3-031-22007-4
[3]  Salman, S.M., Yousef, A.M. and Elsadany, A.A. (2016) Stability, Bifurcation Analysis and Chaos Control of a Discrete Predator-Prey System with Square Root Functional Response. Chaos, Solitons & Fractals, 93, 20-31.
https://doi.org/10.1016/j.chaos.2016.09.020
[4]  Bilal Ajaz, M., Saeed, U., Din, Q., Ali, I. and Israr Siddiqui, M. (2020) Bifurcation Analysis and Chaos Control in Discrete-Time Modified Leslie-Gower Prey Harvesting Model. Advances in Difference Equations, 2020, Article No. 45.
https://doi.org/10.1186/s13662-020-2498-1
[5]  Tassaddiq, A., Shabbir, M.S., Din, Q. and Naaz, H. (2022) Discretization, Bifurcation, and Control for a Class of Predator-Prey Interactions. Fractal and Fractional, 6, Article 31.
https://doi.org/10.3390/fractalfract6010031
[6]  Clark, C.W. (1979) Aggregation and Fishery Dynamics: A Theoretical Study of Schooling and the Purse Seine Tuna Fisheries, Fish. Bull, 77, 317-337.
[7]  Hu, D. and Cao, H. (2017) Stability and Bifurcation Analysis in a Predator-Prey System with Michaelis-Menten Type Predator Harvesting. Nonlinear Analysis: Real World Applications, 33, 58-82.
https://doi.org/10.1016/j.nonrwa.2016.05.010
[8]  Luo, A.C. (2012) Regularity and Complexity in Dynamical Systems. Springer.
http://dx.doi.org/10.1007/978-1-4614-1524-4
[9]  Wiggins, S. (1990) Introduction to Applied Nonlinear Dynamical Systems and Chaos. In: Texts in Applied Mathematics, Springer, 512-523.
http://dx.doi.org/10.1007/b97481
[10]  Carr, J. (1981) Application of Center Manifold Theory. Springer.
https://doi.org/10.1002/zamm.19820621019
[11]  Li, X. and Shao, X. (2023) Flip Bifurcation and Neimark-Sacker Bifurcation in a Discrete Predator-Prey Model with Michaelis-Menten Functional Response. Electronic Research Archive, 31, 37-57.
https://doi.org/10.3934/era.2023003
[12]  Khan, M.S., Abbas, M., Bonyah, E. and Qi, H. (2022) Michaelis-Menten-Type Prey Harvesting in Discrete Modified Leslie-Gower Predator-Prey Model. Journal of Function Spaces, 2022, 1-23.
https://doi.org/10.1155/2022/9575638

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133