全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

弱Allee效应下的不育蚊子的两种释放策略
Two Release Strategies of Sterile Mosquitoes under Weak Allee Effect

DOI: 10.12677/aam.2025.141031, PP. 303-317

Keywords: Allee效应,蚊子种群抑制,周期解,全局渐近稳定性
Allee Effect
, Mosquito Population Suppression, Periodic Solutions, Global Asymptotic Stability

Full-Text   Cite this paper   Add to My Lib

Abstract:

在本文中,我们研究了弱Allee效应下不育蚊子释放技术(SIT)的两种释放策略模型,重点分析了不育蚊子的恒定释放策略和脉冲释放策略的可行性。针对恒定释放策略,我们得到了一个与野生蚊子种群灭绝相对应的边界平衡点的存在性与稳定性结果,并且探讨了代表野生蚊子和不育蚊子共存的内部平衡点的存在性和稳定性。与此同时,我们通过考察脉冲释放策略的平凡周期解存在性与稳定性以及非平凡解的存在性,进一步深入研究了脉冲释放策略的可行性。最后,数值模拟结果为在特定参数条件下存在非平凡周期解提供了有力证据,强烈显示出该系统中可能存在非平凡周期解现象。
In this paper, we investigate two models of the Sterile Insect Technique (SIT) under weak Allee effect, and focus on two strategies of constant release and pulse release of sterile mosquitoes. For the constant release strategy, we establish the existence and stability of a boundary equilibrium corresponding to the extinction of wild mosquito populations, as well as an internal equilibrium representing the coexistence of both wild and sterile mosquito types. Correspondingly, we investigate the pulse release strategy by examining the existence and stability of its trivial periodic solution, as well as non-trivial solutions. Our numerical simulations provide compelling evidence for the existence of nontrivial periodic solutions under certain parameter conditions, strongly suggesting the presence of periodic solutions within the system.

References

[1]  Li, J. (2011) Malaria Model with Stage-Structured Mosquitoes. Mathematical Biosciences and Engineering, 8, 753-768.
[2]  Aziz-Alaoui, M.A., Gakkhar, S., Ambrosio, B. and Mishra, A. (2017) A Network Model for Control of Dengue Epidemic Using Sterile Insect Technique. Mathematical Biosciences and Engineering, 15, 441-460.
https://doi.org/10.3934/mbe.2018020
[3]  WHO Launches Global Strategic Plan to Fight Rising Dengue and Other Aedes-Borne Arboviral Diseases.
https://www.who.int/news/item/03-10-2024-who-launches-global-strategic-plan-to-fight-rising-dengue-and-other-aedes-borne-arboviral-diseases
[4]  Knipling, E.F. (1955) Possibilities of Insect Control or Eradication through the Use of Sexually Sterile Males. Journal of Economic Entomology, 48, 459-462.
https://doi.org/10.1093/jee/48.4.459
[5]  Li, J., Cai, L. and Li, Y. (2016) Stage-Structured Wild and Sterile Mosquito Population Models and Their Dynamics. Journal of Biological Dynamics, 11, 79-101.
https://doi.org/10.1080/17513758.2016.1159740
[6]  Huang, M., Song, X. and Li, J. (2016) Modelling and Analysis of Impulsive Releases of Sterile Mosquitoes. Journal of Biological Dynamics, 11, 147-171.
https://doi.org/10.1080/17513758.2016.1254286
[7]  Li, J. and Ai, S. (2020) Impulsive Releases of Sterile Mosquitoes and Interactive Dynamics with Time Delay. Journal of Biological Dynamics, 14, 289-307.
https://doi.org/10.1080/17513758.2020.1748239
[8]  Allee, W.C. and Bowen, E.S. (1932) Studies in Animal Aggregations: Mass Protection against Colloidal Silver among Goldfishes. Journal of Experimental Zoology, 61, 185-207.
https://doi.org/10.1002/jez.1400610202
[9]  Luo, Y. and Zhang, G. (2019) A Model for the Interactive Dynamics of Sterile and Wild Mosquitoes with Strong Allee Effects. Journal of Southwest University Natural Science Edition, 41, 65-71.
[10]  Cai, L., Ai, S. and Li, J. (2014) Dynamics of Mosquitoes Populations with Different Strategies for Releasing Sterile Mosquitoes. SIAM Journal on Applied Mathematics, 74, 1786-1809.
https://doi.org/10.1137/13094102x
[11]  Wang, X., Shi, J. and Zhang, G. (2019) Bifurcation Analysis of a Wild and Sterile Mosquito Model. Mathematical Biosciences and Engineering, 16, 3215-3234.
https://doi.org/10.3934/mbe.2019160
[12]  Kaboré, A., Sangaré, B. and Traoré, B. (2024) Mathematical Model of Mosquito Population Dynamics with Constants and Periodic Releases of Wolbachia-Infected Males. Applied Mathematics in Science and Engineering, 32, Article 2372581.
https://doi.org/10.1080/27690911.2024.2372581
[13]  Li, J. (2016) New Revised Simple Models for Interactive Wild and Sterile Mosquito Populations and Their Dynamics. Journal of Biological Dynamics, 11, 316-333.
https://doi.org/10.1080/17513758.2016.1216613
[14]  White, S.M., Rohani, P. and Sait, S.M. (2010) Modelling Pulsed Releases for Sterile Insect Techniques: Fitness Costs of Sterile and Transgenic Males and the Effects on Mosquito Dynamics. Journal of Applied Ecology, 47, 1329-1339.
https://doi.org/10.1111/j.1365-2664.2010.01880.x
[15]  Yakob, L., Alphey, L. and Bonsall, M.B. (2008) aedes Aegypti Control: The Concomitant Role of Competition, Space and Transgenic Technologies. Journal of Applied Ecology, 45, 1258-1265.
https://doi.org/10.1111/j.1365-2664.2008.01498.x
[16]  Stone, C.M. (2013) Transient Population Dynamics of Mosquitoes during Sterile Male Releases: Modelling Mating Behaviour and Perturbations of Life History Parameters. PLOS ONE, 8, e76228.
https://doi.org/10.1371/journal.pone.0076228
[17]  Alphey, L., Benedict, M., Bellini, R., Clark, G.G., Dame, D.A., Service, M.W., et al. (2010) Sterile-Insect Methods for Control of Mosquito-Borne Diseases: An Analysis. Vector-Borne and Zoonotic Diseases, 10, 295-311.
https://doi.org/10.1089/vbz.2009.0014
[18]  Mumford, J.D. (n.d.) Application of Benefit/Cost Analysis to Insect Pest Control Using the Sterile Insect Technique. In: Dyck, V.A., Hendrichs, J. and Robinson, A., Eds., Sterile Insect Technique, Springer-Verlag, 481-498.
https://doi.org/10.1007/1-4020-4051-2_18
[19]  Schreiber, S.J. (2003) Allee Effects, Extinctions, and Chaotic Transients in Simple Population Models. Theoretical Population Biology, 64, 201-209.
https://doi.org/10.1016/s0040-5809(03)00072-8
[20]  Li, J. (2010) Modeling of Mosquitoes with Dominant or Recessive Transgenes and Allee Effects. Mathematical Biosciences and Engineering, 7, 99-121.
[21]  Pal, D. and Samanta, G.P. (2018) Effects of Dispersal Speed and Strong Allee Effect on Stability of a Two-Patch Predator-Prey Model. International Journal of Dynamics and Control, 2, 1-12.
[22]  Vidyasagar, M. (1980) On the Stabilization of Nonlinear Systems Using State Detection. IEEE Transactions on Automatic Control, 25, 504-509.
https://doi.org/10.1109/tac.1980.1102376
[23]  Bainov, D. and Simeonov, P. (1993) Impulsive Differential Equations: Periodic Solutions and Applications. CRC Press, 26-30.
[24]  Yu, J. (2020) Existence and Stability of a Unique and Exact Two Periodic Orbits for an Interactive Wild and Sterile Mosquito Model. Journal of Differential Equations, 269, 10395-10415.
https://doi.org/10.1016/j.jde.2020.07.019
[25]  Yu, J. (2018) Modeling Mosquito Population Suppression Based on Delay Differential Equations. SIAM Journal on Applied Mathematics, 78, 3168-3187.
https://doi.org/10.1137/18m1204917

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133