|
具有多时滞的血吸虫传染病模型稳定性和Hopf分支分析
|
Abstract:
考虑血吸虫在中间宿主钉螺和终极宿主人体内的潜伏期,本文建立一类具有潜伏期时滞的血吸虫传播动力学模型,证明模型全局正解的存在性与最终有界性,给出疾病的基本再生数,研究无病平衡点的存在性与稳定性,讨论模型地方病平衡态的存在性与稳定性,探讨Hopf分支的存在性,以及模型关键参数对基本再生数的影响,探究潜伏期时滞在血吸虫传播和防控中的作用和地位。
Considering the incubation period of Schistosoma in the intermediate host, the snail, and the ultimate host, the human, this paper establishes a Schistosome model with multi-delays, proves the existence and ultimate boundedness of the global positive solutions of this model. And then, the basic reproduction number is given, which describes the existence and stability of the disease free equilibrium, the existence and stability of the endemic equilibrium. Further, the existence of the Hopf bifurcation, the influence of the key parameters on the basic reproduction number and the role of delay in the transmission and control of this disease are discussed.
[1] | 刘涛, 陈利玉, 蔡力汀. 晚期血吸虫病诊断方法和技术的研究进展[J]. 临床肺科杂志, 2012, 17(11): 2056-2058. |
[2] | 夏超明, 彭鸿娟. 人体寄生虫学[M]. 北京: 中国医药科技出版社, 2016. |
[3] | Mawa, P.A., Kincaid-Smith, J., Tukahebwa, E.M., Webster, J.P. and Wilson, S. (2021) Schistosomiasis Morbidity Hotspots: Roles of the Human Host, the Parasite and Their Interface in the Development of Severe Morbidity. Frontiers in Immunology, 12, Article 635869. https://doi.org/10.3389/fimmu.2021.635869 |
[4] | Wang, W., Bergquist, R., King, C.H. and Yang, K. (2021) Elimination of Schistosomiasis in China: Current Status and Future Prospects. PLOS Neglected Tropical Diseases, 15, e0009578. https://doi.org/10.1371/journal.pntd.0009578 |
[5] | Zhou, X., Wang, L., Chen, M., Wu, X., Jiang, Q., Chen, X., et al. (2005) The Public Health Significance and Control of Schistosomiasis in China—Then and Now. Acta Tropica, 96, 97-105. https://doi.org/10.1016/j.actatropica.2005.07.005 |
[6] | Macdonald, G. (1965) The Dynamics of Helminth Infections, with Special Reference to Schistosomes. Transactions of the Royal Society of Tropical Medicine and Hygiene, 59, 489-506. https://doi.org/10.1016/0035-9203(65)90152-5 |
[7] | Kadaleka, S., Abelman, S. and Tchuenche, J.M. (2021) A Human-Bovine Schistosomiasis Mathematical Model with Treatment and Mollusciciding. Acta Biotheoretica, 69, 511-541. https://doi.org/10.1007/s10441-021-09416-0 |
[8] | Diaby, M., Iggidr, A., Sy, M. and Sène, A. (2014) Global Analysis of a Schistosomiasis Infection Model with Biological Control. Applied Mathematics and Computation, 246, 731-742. https://doi.org/10.1016/j.amc.2014.08.061 |
[9] | 杨悦, 黄晓霞, 吕贵臣. 血吸虫病动力学模型的稳定性分析[J]. 理论数学, 2022, 12(12): 2254-2266. |
[10] | 邓维成, 杨镇, 谢慧群, 等. 日本血吸虫病的诊治——湘鄂赣专家共识[J]. 中国血吸虫病防治杂志, 2015, 27(5): 451-456. |
[11] | Ding, C., Tao, N., Sun, Y. and Zhu, Y. (2016) The Effect of Time Delays on Transmission Dynamics of Schistosomiasis. Chaos, Solitons & Fractals, 91, 360-371. https://doi.org/10.1016/j.chaos.2016.06.017 |
[12] | Zhang, T. and Zhao, X. (2020) Mathematical Modeling for Schistosomiasis with Seasonal Influence: A Case Study in Hubei, China. SIAM Journal on Applied Dynamical Systems, 19, 1438-1471. https://doi.org/10.1137/19m1280259 |
[13] | Ding, C., Liu, W., Sun, Y. and Zhu, Y. (2019) A Delayed Schistosomiasis Transmission Model and Its Dynamics. Chaos, Solitons & Fractals, 118, 18-34. https://doi.org/10.1016/j.chaos.2018.11.005 |
[14] | 冯志红, 常玉. 一类血吸虫病模型 Hopf 分支的频域分析[J]. 北京化工大学学报(自然科学版), 2018, 45(1): 115-118. |
[15] | Hale, J.K. and Verduyn Lunel, S.M. (1993) Introduction to Functional Differential Equations. Springer-Verlag. |
[16] | Beretta, E. and Kuang, Y. (2002) Geometric Stability Switch Criteria in Delay Differential Systems with Delay Dependent Parameters. SIAM Journal on Mathematical Analysis, 33, 1144-1165. https://doi.org/10.1137/s0036141000376086 |
[17] | Hassard, B.D., Kazarinoff, N.D. and Wan, Y.H. (1981) Theory and Applications of Hopf Bifurcation. Cambridge University Press. |