全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类四维非光滑系统的同宿环和异宿环定性分析
Qualitative Analysis of Homoclinic and Heteroclinic Orbits in a Class of Non-Smooth Four-Dimensional Systems

DOI: 10.12677/aam.2025.141025, PP. 217-232

Keywords: 同宿环,异宿环,混沌,非光滑动力系统
Homoclinic Cycle
, Heteroclinic Cycle, Chaos, Non-Smooth Dynamical System

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于高维非光滑系统的复杂性,准确预测其同宿环和异宿环极其困难。本文针对一类四维非光滑动力系统,分别提出了能够精确检测同宿环和异宿环的判据,并利用数学分析和定性理论对其进行了严格证明。此外,本文还建立了此类特殊环诱导系统混沌的存在条件。最后,通过数值算例验证了结果的有效性。
Due to the complexity of high-dimensional non-smooth systems, accurately predicting homoclinic cycles or heteroclinic cycles is extremely difficult. This paper proposes some criterion for precisely detecting homoclinic cycles and heteroclinic cycles in a kind of four-dimensional non-smooth dynamical systems, respectively. By combining mathematical analysis with qualitative theory, this work presents a rigourous proof of that. Further, it establishes existence conditions of chaos induced by such special cycles in the considered system. Finally, the numerical simulation for two designed examples is offered to test the validity of obtained results.

References

[1]  王高雄, 朱思铭, 等, 编. 常微分方程[M]. 北京: 高等教育出版社, 2007.
[2]  路凯. 三维与四维分段光滑系统奇异环和混沌的复杂动力学研究[D]: [博士学位论文]. 广州: 华南理工大学, 2019.
[3]  Bernardo, M., Budd, C., Champneys, A.R. and Kowalczyk, P. (2008) Piecewise-Smooth Dynamical Systems: Theory and Applications. Vol. 163, Springer Science & Business Media.
[4]  Luo, T. and Wang, Z. (2016) Dynamics and SC-CNN Circuit Implementation of a Periodically Forced Non-Smooth Mechanical System. Nonlinear Dynamics, 85, 23-45.
https://doi.org/10.1007/s11071-016-2665-9
[5]  朱彬, 魏周超. 一类五维二区域分段仿射系统同宿轨的存在性[J]. 湖北民族学院学报: 自然科学版, 2019, 37(4): 389-396.
[6]  Wei, Z., Li, Y., Sang, B., Liu, Y. and Zhang, W. (2019) Complex Dynamical Behaviors in a 3D Simple Chaotic Flow with 3D Stable or 3D Unstable Manifolds of a Single Equilibrium. International Journal of Bifurcation and Chaos, 29, Article ID: 1950095.
https://doi.org/10.1142/s0218127419500950
[7]  Wu, D. and Yu, X. (2020) New Homoclinic Orbits for Hamiltonian Systems with Asymptotically Quadratic Growth at Infinity. Qualitative Theory of Dynamical Systems, 19, Article No. 22.
https://doi.org/10.1007/s12346-020-00346-9
[8]  Liu, Y. and Yang, Q. (2010) Dynamics of a New Lorenz-Like Chaotic System. Nonlinear Analysis: Real World Applications, 11, 2563-2572.
https://doi.org/10.1016/j.nonrwa.2009.09.001
[9]  Yang, Q. and Chen, Y. (2014) Complex Dynamics in the Unified Lorenz-Type System. International Journal of Bifurcation and Chaos, 24, Article ID: 1450055.
https://doi.org/10.1142/s0218127414500552
[10]  Leonov, G.A., Kuznetsov, N.V. and Mokaev, T.N. (2015) Homoclinic Orbits, and Self-Excited and Hidden Attractors in a Lorenz-Like System Describing Convective Fluid Motion. The European Physical Journal Special Topics, 224, 1421-1458.
https://doi.org/10.1140/epjst/e2015-02470-3
[11]  Leonov, G.A. (2014) Fishing Principle for Homoclinic and Heteroclinic Trajectories. Nonlinear Dynamics, 78, 2751-2758.
https://doi.org/10.1007/s11071-014-1622-8
[12]  Wang, C. and Zhang, X. (2019) Canards, Heteroclinic and Homoclinic Orbits for a Slow-Fast Predator-Prey Model of Generalized Holling Type Iii. Journal of Differential Equations, 267, 3397-3441.
https://doi.org/10.1016/j.jde.2019.04.008
[13]  Li, L. and Huang, L. (2014) Concurrent Homoclinic Bifurcation and Hopf Bifurcation for a Class of Planar Filippov Systems. Journal of Mathematical Analysis and Applications, 411, 83-94.
https://doi.org/10.1016/j.jmaa.2013.09.025
[14]  Carmona, V., Fernández-Sánchez, F., García-Medina, E. and Teruel, A.E. (2010) Existence of Homoclinic Connections in Continuous Piecewise Linear Systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 20, Article ID: 013124.
https://doi.org/10.1063/1.3339819
[15]  Carmona, V., Fernández-Sánchez, F. and García-Medina, E. (2017) Including Homoclinic Connections and T-Point Heteroclinic Cycles in the Same Global Problem for a Reversible Family of Piecewise Linear Systems. Applied Mathematics and Computation, 296, 33-41.
https://doi.org/10.1016/j.amc.2016.10.008
[16]  Wu, T. and Yang, X. (2016) A New Class of 3-Dimensional Piecewise Affine Systems with Homoclinic Orbits. Discrete and Continuous Dynamical Systems, 36, 5119-5129.
https://doi.org/10.3934/dcds.2016022
[17]  Xu, W., Xu, W. and Cai, L. (2018) Heteroclinic Cycles in a New Class of Four-Dimensional Discontinuous Piecewise Affine Systems. Chinese Physics B, 27, Article ID: 110201.
https://doi.org/10.1088/1674-1056/27/11/110201
[18]  Yang, Q. and Lu, K. (2018) Homoclinic Orbits and an Invariant Chaotic Set in a New 4D Piecewise Affine Systems. Nonlinear Dynamics, 93, 2445-2459.
https://doi.org/10.1007/s11071-018-4335-6
[19]  Shilnikov, L.P., Shilnikov, A.L., Turaev, D.V. and Chua, L.O. (1998) Methods of Qualitative Theory in Nonlinear Dynamics. Part I. World Scientific Publishing.
https://doi.org/10.1142/9789812798596

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133