全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于局部结构约束的点云法向估计算法
Point Cloud Normal Estimation Algorithm Based on Local Structure Constraints

DOI: 10.12677/aam.2025.141023, PP. 203-210

Keywords: 点云,法向估计,权重引导,深度学习
Point Cloud
, Normal Estimation, Weight Guidance, Deep Learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

法向量作为点云不可或缺的属性之一,在诸多算法中具有重要作用,因此法向估计一直是处理点云的一个重要任务。然而,对于尖锐特征点,其邻域是两个表面或者多个表面的交汇处,这会增加法向估计的难度。在处理尖锐特征点时,现有的一些算法仅仅考虑了点和平面之间的距离属性,在法向估计时仍存在一些缺陷。为了更好地改善上述问题,Wang等人通过加权平面拟合的方法,不仅考虑点和平面之间的距离属性,而且加入了法向属性,该方法提高了法向估计的准确性。然而该方法并未考虑点和平面之间的法向属性。因此,本文在该方法的框架之上,考虑了点和拟合平面的法向差。实验结果表明,本文算法在法向估计的准确性上相比现有的算法有所提高。
As one of the indispensable attributes of point cloud, normal vector plays an important role in many algorithms, so normal estimation has always been an important task in processing point cloud. However, for sharp feature points, their neighborhood is the intersection of two or more surfaces, which increases the difficulty of normal estimation. When processing sharp feature points, some existing algorithms only consider the distance attribute between the point and the plane, and there are still some defects in normal estimation. In order to better improve the above problems, Wang et al. not only consider the distance attribute between the point and the plane, but also add the normal attribute by the weighted plane fitting method, which improves the accuracy of normal estimation. However, this method does not consider the normal attribute between the point and the plane. Therefore, this paper considers the normal difference between the point and the fitting plane on the framework of this method. Experimental results show that the accuracy of normal estimation of the proposed algorithm is improved compared with the existing algorithms.

References

[1]  Amenta, N. and Bern, M. (1999) Surface Reconstruction by Voronoi Filtering. Discrete & Computational Geometry, 22, 481-504.
https://doi.org/10.1007/pl00009475
[2]  Dey, T.K. and Goswami, S. (2006) Provable surface reconstruction from noisy samples. Computational Geometry, 35, 124-141.
https://doi.org/10.1016/j.comgeo.2005.10.006
[3]  OuYang, D. and Feng, H. (2005) On the Normal Vector Estimation for Point Cloud Data from Smooth Surfaces. Computer-Aided Design, 37, 1071-1079.
https://doi.org/10.1016/j.cad.2004.11.005
[4]  Alliez, P., Cohen-Steiner, D., Tong, Y., et al. (200) Voronoi-Based Variational Reconstruction of Unoriented Point Sets. Proceedings of the Fifth Eurographics Symposium on Geometry Processing, Barcelona, 4-6 July 2007.
[5]  Alexa, M., Behr, J., Cohenor, D., et al. (2001) Point Set Surfaces. Proceedings Visualization, 2001. VIS’01., San Diego, 21-26 October 2001, 21-29.
[6]  Öztireli, A.C., Guennebaud, G. and Gross, M. (2009) Feature Preserving Point Set Surfaces Based on Non‐linear Kernel Regression. Computer Graphics Forum, 28, 493-501.
https://doi.org/10.1111/j.1467-8659.2009.01388.x
[7]  Flix, C., Ruiz, U. and Rivera, M. (2017) Surface-Normal Estimation with Neighborhood Reorganization for 3D Reconstruction. In: Rueda, L., Mery, D. and Kittler, J., Eds., Progress in Pattern Recognition, Image Analysis and Applications. CIARP 2007, Springer, 321-330.
[8]  Jones, T.R., Durand, F. and Zwicker, M. (2004) Normal Improvement for Point Rendering. IEEE Computer Graphics and Applications, 24, 53-56.
https://doi.org/10.1109/mcg.2004.14
[9]  Valdivia, P., Cedrim, D., Petronetto, F., Paiva, A. and Nonato, L.G. (2013) Normal Correction Towards Smoothing Point-Based Surfaces. 2013 XXVI Conference on Graphics, Patterns and Images, Arequipa, 5-8 August 2013, 187-194.
https://doi.org/10.1109/sibgrapi.2013.34
[10]  Wang, J., Xu, K., Liu, L., Cao, J., Liu, S., Yu, Z., et al. (2013) Consolidation of Low‐Quality Point Clouds from Outdoor Scenes. Computer Graphics Forum, 32, 207-216.
https://doi.org/10.1111/cgf.12187
[11]  Han, X., Jin, J.S., Wang, M. and Jiang, W. (2017) Iterative Guidance Normal Filter for Point Cloud. Multimedia Tools and Applications, 77, 16887-16902.
https://doi.org/10.1007/s11042-017-5258-9
[12]  Hoppe, H., DeRose, T., Duchamp, T., McDonald, J. and Stuetzle, W. (1992) Surface Reconstruction from Unorganized Points. ACM SIGGRAPH Computer Graphics, 26, 71-78.
https://doi.org/10.1145/142920.134011
[13]  Pauly, M., Keiser, R., Kobbelt, L.P. and Gross, M. (2003) Shape Modeling with Point-Sampled Geometry. ACM Transactions on Graphics, 22, 641-650.
https://doi.org/10.1145/882262.882319
[14]  Mederos, B., Velho, L. and De Figueiredo, L.H. (2003) Robust Smoothing of Noisy Point Clouds. Siam Conference on Geometric Design and Computing.
[15]  Wang, Y., Feng, H., Delorme, F. and Engin, S. (2013) An Adaptive Normal Estimation Method for Scanned Point Clouds with Sharp Features. Computer-Aided Design, 45, 1333-1348.
https://doi.org/10.1016/j.cad.2013.06.003

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133