|
建筑垃圾资源化利用三方博弈与稳定策略优化研究
|
Abstract:
随着城市建筑垃圾总量不断扩大,为实现建筑垃圾资源化利用,需要厘清施工单位、社会资本及政府三者在其过程中的利益关系。首先通过三方演化博弈模型,分析不同策略组合下的均衡条件。进而引入动态奖惩制度,与静态制度对比分析系统的演化稳定策略。研究结果表明,施工单位、社会资本、政府分别稳定于“合法处理”“投资资源化项目”“实行激励约束政策”。当三方都选择积极处理建筑垃圾时,动态机制下的奖惩成本与三方策略选择无关,且动态机制下政府的激励约束政策效果更优。随后构建建筑垃圾资源化利用稳定策略优化模型,通过NSGA-II算法求得Pareto前沿面,得出内外部因素下的最佳组合方式,从而选择最为合适的方案。
With the continuous expansion of the total amount of urban construction waste, in order to realize the resource utilization of construction waste, it is necessary to clarify the relationship among the interests of the construction unit, social capital, and the government in its process. Firstly, the tripartite evolutionary game model is used to analyze the equilibrium conditions under different strategy combinations. Then, the dynamic reward and punishment system is introduced, and the evolutionary stability strategy of the system is compared with the static system. The results show that the construction unit, social capital, and government are stable in “legal treatment”, “investment in resource projects”, and “implementation of incentive and restraint policies”, respectively. When all three parties choose to actively deal with construction waste, the reward and punishment cost under the dynamic mechanism has nothing to do with the tripartite strategy choice, and the government’s incentive and restraint policies under the dynamic mechanism have a better effect. Then, the optimization model of the stable strategy of construction waste resource utilization was constructed, and the Pareto front was obtained through the NSGA-II algorithm, and the optimal combination of internal and external factors was obtained, so as to select the most suitable scheme.
[1] | 赖晓梅, 陈怡, 熊瑶. 奖惩机制下政府与建筑垃圾资源化企业的博弈研究[J]. 湖北理工学院学报(人文社会科学版), 2020, 37(2): 31-35, 71. |
[2] | Song, Y., Wang, Y., Liu, F. and Zhang, Y. (2017) Development of a Hybrid Model to Predict Construction and Demolition Waste: China as a Case Study. Waste Management, 59, 350-361. https://doi.org/10.1016/j.wasman.2016.10.009 |
[3] | Yuan, H. (2017) Barriers and Countermeasures for Managing Construction and Demolition Waste: A Case of Shenzhen in China. Journal of Cleaner Production, 157, 84-93. https://doi.org/10.1016/j.jclepro.2017.04.137 |
[4] | 蓝华生. 财税政策对福建省建筑废弃物资源化利用的激励效应研究[J]. 福州大学学报: 哲学社会科学版, 2019, 33(4): 61-65. |
[5] | 王一新, 薛兰兰, 缑文娟. 施工现场建筑垃圾资源化利用关键障碍因素研究[J]. 干旱区资源与环境, 2023, 37(1): 113-119. |
[6] | Chen, J., Hua, C. and Liu, C. (2019) Considerations for Better Construction and Demolition Waste Management: Identifying the Decision Behaviors of Contractors and Government Departments through a Game Theory Decision-Making Model. Journal of Cleaner Production, 212, 190-199. https://doi.org/10.1016/j.jclepro.2018.11.262 |
[7] | 邵志国, 李梦笛, 韩传峰, 等. 基于演化博弈的建筑垃圾处理协同机制及仿真[J]. 中国管理科学, 2024, 32(7): 324-334. |
[8] | 李浩, 翟宝辉. 中国建筑垃圾资源化产业发展研究[J]. 城市发展研究, 2015, 22(3): 119-124. |
[9] | Long, H., Liu, H., Li, X. and Chen, L. (2020) An Evolutionary Game Theory Study for Construction and Demolition Waste Recycling Considering Green Development Performance under the Chinese Government’s Reward-Penalty Mechanism. International Journal of Environmental Research and Public Health, 17, Article 6303. https://doi.org/10.3390/ijerph17176303 |
[10] | Friedman, D. (1991) Evolutionary Games in Economics. Econometrica, 59, 637-666. https://doi.org/10.2307/2938222 |
[11] | Melchor-Aguilar, D. (2004) On the Lyapunov’s Indirect Method for Scalar Differential-Difference Equations. IFAC Proceedings Volumes, 37, 175-180. https://doi.org/10.1016/s1474-6670(17)30464-0 |
[12] | 谢识予. 经济博弈论[M]. 上海: 复旦大学出版社, 2002. |
[13] | 陈婉婷, 胡志华. 奖惩机制下政府监管与制造商回收的演化博弈分析[J]. 软科学, 2019, 33(10): 106-112, 125. |
[14] | 王一新, 薛兰兰, 缑文娟. 社会资本参与建筑垃圾资源化项目演化博弈分析——基于政府奖惩机制视角[J]. 干旱区资源与环境, 2022, 36(7): 30-37. |
[15] | 鲁圣鹏, 翟凯. 社会共治下建筑垃圾违法倾倒监管演化博弈研究[J]. 东华理工大学学报(社会科学版), 2022, 41(3): 219-225. |
[16] | Gunantara, N. (2018) A Review of Multi-Objective Optimization: Methods and Its Applications. Cogent Engineering, 5, Article 1502242. https://doi.org/10.1080/23311916.2018.1502242 |
[17] | Deb, K. and Gupta, H. (2005) Searching for Robust Pareto-Optimal Solutions in Multi-Objective Optimization. Evolutionary Multi-Criterion Optimization, Guanajuato, 9-11 March 2005, 150-164. https://doi.org/10.1007/978-3-540-31880-4_11 |