全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

互动仪式链视角下的国产新能源汽车社群口碑信息研究
A Study on the Word-of-Mouth Information of Domestic New Energy Vehicle Communities from the Perspective of Interaction Ritual Chains

DOI: 10.12677/hjdm.2025.151006, PP. 71-81

Keywords: 互动仪式链,新能源汽车,LDA模型,IPA分析,口碑信息
Interactive Ritual Chain
, Electric New Energy Vehicles, Latent Dirichlet Allocation Model, International Phonetic Alphabet Analysis, Word-of-Mouth Intel

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究旨在探究国产新能源汽车消费者的需求和偏好,提升新能源汽车市场竞争力和消费者购买意愿。我们通过分析汽车之家社群中的口碑评价,运用隐含狄利克雷分布模型挖掘潜在主题,结合IPA分析模型探讨消费者对新能源汽车的关注度和满意度之间的内在联系。研究发现,消费者对新能源汽车持积极态度,特别关注智能化和人性化方面。然而,他们对新能源汽车的整体感知、性能与性价比评估、外观设计及配置的科技感方面关注度较低而满意度高,对车内空间和内饰做工的满意度最低。本研究以多维、全面的可视化方式揭示了消费者对国产新能源汽车的形象和评价,为新能源车企提供产品改造升级的方向。
This study aims to explore the core demands and preferences of consumers of domestic new energy vehicles (NEV) and further enhance the market competitiveness and consumers’ willingness to purchase. This study applies the Latent Dirichlet Allocation model to screen the heatedly-discussed topics of the vehicle community, and the IPA model to analyze consumer satisfaction with those topics. The study reveals that consumers hold a positive attitude towards domestic NEV and pay particular attention to its intelligent and humanized designs. However, as for satisfaction evaluation, they are less satisfied with the space and interiors. Furthermore, they put less value on the cost performance, exterior design, and intelligent devices. This study reveals the consumers’ comments on domestic NEV in a multi-dimensional way, providing directions for domestic NEV enterprises in product optimization and upgrading.

References

[1]  罗少文. 我国新能源汽车产业发展战略研究([D]: [硕士学位论文]. 上海: 复旦大学, 2009.
[2]  惠博静. 面向低油耗的燃料电池乘用车动力系统匹配设计[J]. 汽车实用技术, 2023, 48(5): 21-29.
[3]  李春林, 冯志骥. 基于文本挖掘的新能源汽车用户评论研究[J]. 特区经济, 2020(4): 148-151.
[4]  林维奇, 陈启杰. 关于新能源汽车的文献综述[J]. 特区经济, 2012(11): 287-290.
[5]  唐葆君, 刘江鹏. 中国新能源汽车产业发展展望[J]. 北京理工大学学报(社会科学版), 2015, 17(2): 1-6.
[6]  卜曲. 品牌社区网络结构及成员互动内容研究[J]. 现代商贸工业, 2016, 37(4): 55-56.
[7]  潘永洁, 梁旭. “蔚来汽车”社群营销模式研究[J]. 中国商论, 2021(17): 28-31.
[8]  吴迪, 严三九. 网络亚文化群体的互动仪式链模型探究[J]. 现代传播(中国传媒大学学报), 2016, 38(3): 17-20.
[9]  中华人民共和国中央人民政府. 扩大内需战略规划纲要(2022-2035年) [EB/OL].
http://www.gov.cn/xinwen/2022-12/14/content_5732067.htm, 2022-12-14.
[10]  中华人民共和国中央人民政府. 产销连续8年全球第一, 我国新能源汽车保持高速增长[EB/OL].
http://www.gov.cn/xinwen/2023-01/13/content_5736715.htm, 2023-01-13.
[11]  Caulfield, B., Farrell, S. and McMahon, B. (2010) Examining Individuals Preferences for Hybrid Electric and Alternatively Fuelled Vehicles. Transport Policy, 17, 381-387.
https://doi.org/10.1016/j.tranpol.2010.04.005
[12]  Zhang, X., Rao, R., Xie, J. and Liang, Y. (2014) The Current Dilemma and Future Path of China’s Electric Vehicles. Sustainability, 6, 1567-1593.
https://doi.org/10.3390/su6031567
[13]  Yang, Z. and Tang, M. (2019) Welfare Analysis of Government Subsidy Programs for Fuel-Efficient Vehicles and New Energy Vehicles in China. Environmental and Resource Economics, 74, 911-937.
https://doi.org/10.1007/s10640-019-00353-8
[14]  王迪. 互动仪式链视阈下《伟大征程》的传播模式创新[J]. 声屏世界, 2022(11): 23-25+47.
[15]  Blei, D.M., Ng, A.Y. and Jordan, M.I. (2003) Latent Dirichlet Allocation. Journal of Machine Learning Research, 3, 993-1022.
[16]  关鹏, 王曰芬. 科技情报分析中LDA主题模型最优主题数确定方法研究[J]. 现代图书情报技术, 2016(9): 42-50.
[17]  薛佳奇, 杨凡. 基于交叉熵与困惑度的LDA-SVM主题研究[J]. 智能计算机与应用, 2019, 9(4): 45-50.
[18]  Du, Y., Yi, Y., Li, X., Chen, X., Fan, Y. and Su, F. (2020) Extracting and Tracking Hot Topics of Micro-Blogs Based on Improved Latent Dirichlet Allocation. Engineering Applications of Artificial Intelligence, 87, Article ID: 103279.
https://doi.org/10.1016/j.engappai.2019.103279
[19]  蒋翠清, 吕孝忠, 段锐. 基于主题模型的产品在线论坛主题演化分析[J]. 系统工程学报, 2019, 34(5): 598-609.
[20]  李茹静. 电动汽车网络口碑对消费者购买的影响研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2020.
[21]  汪宸瑀. 新能源汽车消费者购买意愿影响因素研究[J]. 商场现代化, 2023(24): 14-16.
[22]  毕达天, 楚启环, 曹冉. 基于文本挖掘的消费者差评意愿的影响因素研究[J]. 情报理论与实践, 2020, 43(10): 137-143.
[23]  Martilla, J.A. and James, J.C. (1977) Importance-Performance Analysis. Journal of Marketing, 41, 77-79.
https://doi.org/10.1177/002224297704100112

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133